CHAPTER 6

A NATURAL APPROACH TO CHEMISTRY

Elements and the Periodic Table

6.1 The Periodic Table

Are you made of star dust?

Are you made of star dust?

The Big Bang produced hydrogen and helium and a tiny bit of lithium

Are you made of star dust?

Other elements were created in the cores of exploding stars

Key Concepts

Element	% by mole
Hydrogen	63.0
Oxygen	26.0
Carbon	9.0
Nitrogen	1.25
Calcium	0.25
Phosphorus	0.19
Potassium	0.06
Sulfur	0.06
Sodium	0.04
Chlorine	0.025
Magnesium	0.013
Iron	0.00004
Iodine	0.000002

99% of atoms in a human body come from only 4 elements Key Concepte

Essential elements

Η				Г	ma	cror	nutri	onte									He
Li	Be				trac		lem	ents	5			В	C	N	0	F	Ne
Na	Mg								-			Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

macronutrients: elements needed in large quantities by your body.

trace elements: elements that are needed in very small quantities to maintain optimum health.

Metals, nonmetals and metalloids

Cs 132.94	Ba	Lu 174.97 http://	Hf 178.40 hatsian 104 Rf	Ta tat.95 tataan 105	W 183.04 1.000	Re 10621 Annum	Os 190.23 108 Hc	Ir 192.22 solure 109 Mt	Pt reside statement	Au 196,97 galt Rg	Hg 200.559 reenuny 112 Uurb	TI 20430 thation	Pb M72 Mat	Bi 206,98 Innuth	Po 2000 potentian 116	At (210) anatre	Rn Internation
21.030 rotanium 37 Rb 85.468 ndminer	40.078 ciklum 38 ST 87.62 stuntum 56	44.856 scandum 39 Y 88.906 yttsum 71	47.067 transum 40 ZI [*] 01.224 272	12.943 venadium 41 ND 92.905 rootsum 73	51.006 chromaum 42 MO 95.96 molylationau 74	54900 nanganese 43 TC (96 tailcontan	55.045 inn 44 Ru 101.07 ruthenam	se aas cobait 45 Rh 102.91 (faction) 77	58.695 mckal 46 Pd 106.42 pulledum	11546 002987 47 Ag 107.67 sites	48 Cd 112,41 cachrians B0	49 11482 Intum 81	77.61 gernation 50 Sn 118.71 in 82	*9.022 anime 51 Sb 121.76 antmore 83	70.56 selection 52 Te 127.60 tehanian 84	79,904 benetine \$3 126,90 iedina 85	11.00 tryptin 54 Xe 131.29 securit
13079 bydagni 3 Li 531 1614 1614 11 Na 22.990 19 K	aroup 2 4 Be vot22 beyflum 12 Mgg 24.355 mignetium 20 Ca	At At group 3 21 Sc	omic omic group 4 22 Ti	Num Mass goop 5 23 V	s	group 7	C 12.011 carbon group 8	group 9 27 CO	group 10	retal talloid metal group t1 29 Cu	group t2 30 Zn	group 13 5 B tast11 bonst 13 All 25.963 dominum 31 Ga	group 14 ⁶ C 12011 ceton ¹⁴ Si 28.086 ckom ³² Ge	group 15 7 N 14.007 72000 15 P 20.074 sharptone 33 AS	group 16 8 O 15 org org org star 34 Se	95040 17 9 F 15 988 Accres 17 Cl 35.653 choses 35 Br	10 10 2010 20100 2000 20100 200 20000 2000000

ionic compound: one non-metal atom bonded with one metal atom

molecular compound: two non-metal atoms bonded with each other

Questions

Metals, nonmetals and metalloids

ionic compound: one non-metal atom bonded with one metal atom

molecular compound: two non-metal atoms bonded with each other

What does "periodic" in "periodic table" mean?

Concepte

Mendeleev looks for a logical way to organize the elements known at the time.

Dimitri Mendeleev

Note that at this time, very little is known about atoms. Protons and atomic numbers were not discovered yet. Key Concepte

Mendeleev uses density (a physical property) of atoms, and organizes them in order of increasing atomic mass.

‹#>

The **periodic** table contains patterns that repeat at regular intervals

celoule

Concepts

Atomic radius

Like for density, there is a **repeating pattern** in atomic radii.

Key Concepts

Atomic radius

Key Concepts

Atomic radius

atomic radius: the distance from the center of an atom to its "outer edge."

Н																	He
Li	Be				В	С	Ν	0	F	Ne							
Na	Mg											Al	Si	Ρ	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

small

large

Key Concepte

Electronegativity

electronegativity: the ability of an atom to attract another atom's electrons when bound to that other atom.

Н																	He
Li	Be											В	С	Ν	Ο	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

low

high

Key Concepts

Ionization energy

ionization energy: the energy required to remove an electron from an atom.

Н																	He
Li	Be													Ν	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

low

General Periodic Trends

- Atomic and ionic size
- Ionization energy
- Electronegativity

Higher effective nuclear charge Electrons held more tightly

Larger orbitals. Electrons held less tightly.

Size goes UP on going down a group.

Atomic Size

- Because electrons are added further from the nucleus, there is less attraction. This is due to additional energy levels and the shielding effect. Each additional energy level "shields" the electrons from being pulled in toward the nucleus.
- Size goes DOWN on going across a period.

Atomic Size

Size **decreases** across a period owing to increase in the positive charge from the protons. Each added electron feels a greater and greater + charge because the protons are pulling in the same direction, where the electrons are scattered.

Which is Bigger?

- Na or K ?
- Na or Mg ?
- Al or I ?

Ion Sizes

Li,152 pm 3e and 3p Does the size go up or down when losing an electron to form a cation?

- CATIONS are SMALLER than the atoms from which they come.
- The electron/proton attraction has gone UP and so size
 DECREASES.

- ANIONS are LARGER than the atoms from which they come.
- The electron/proton attraction has gone DOWN and so size INCREASES.
- Trends in ion sizes are the same as atom sizes.

Trends in Ion Sizes

6.1 The Periodic Table

Which is Bigger?

- Cl or Cl⁻ ?
- K⁺ or K ?
- Ca or Ca⁺² ?
- I⁻ or Br⁻ ?

Ionization Energy

IE = energy required to remove an electron from an atom (in the gas phase).

(g) + e-^{Mg⁺} ^{Is² 2s² 2p⁶ 3s¹ ^{mov}}

Mg (g) + 738 kJ ---> Mg⁺

Trends in Ionization Energy

- IE increases across a period because the positive charge increases.
- Metals lose electrons more easily than nonmetals.
- Nonmetals lose electrons with difficulty (they like to GAIN electrons).

Trends in Ionization Energy

- IE increases UP a group
- Because size increases (Shielding Effect)

Which has a higher 1st ionization energy?

- Mg or Ca ?
- Al or S ?
- Cs or Ba ?

Electronegativity, χ

X is a measure of the ability of an atom in a molecule to attract electrons to itself.

Concept proposed by Linus Pauling 1901-1994

Linus Pauling 1901–1994 (Thomas Hollyman/ Photo Researchers, Inc.) Periodic Trends: Electronegativity

- In a group: Atoms with fewer energy levels can attract electrons better (less shielding). So, electronegativity increases UP a group of elements.
- In a period: More protons, while the energy levels are the same, means atoms can better attract electrons.
 So, electronegativity increases
 RIGHT in a period of elements. 6.1 The Periodic Table

Electronegativity

								Н								
1A	2A					3A	4A	5A	6A	7A						
Li	Be					В	С	Ν	0	F						
1.0	1.5					2.0	2.5	3.0	3.5	4.0						
Na	Mg					AL	Si	Р	S	CL						
0.9	1.2	3B	4B	5B	6B	7 B				1B	2B	1.5	1.8	2.1	2.5	3.0
К	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ní	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Cs	Ba	La	Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	Τl	Pb	Bi	Po	At
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2

Figure 9.9 Electronegativity values for the elements according to Pauling. Trends for electronegativities are the opposite of the trends defining metallic character. Nonmetals have high values of electronegativity, the metalloids have intermediate values, and the metals have low values.

Which is more electronegative?

- F or Cl ?
- Na or K ?
- Sn or I ?

The first periodic table

Mendeleev placed the elements in order of increasing atomic mass and then noticed a repeating pattern in the oxide and hydride formula.

The first periodic table

Mendeleev placed the elements in order of increasing atomic mass and then noticed a repeating pattern in the oxide and hydride formula.

A new pattern was discovered!

The first periodic table

Oxides and hydrides sorted into rows:

Stop and Think

Mendeleev left empty spaces for elements not yet discovered

Key Concepts

The modern periodic table

The modern periodic table arranges elements in order of **increasing atomic number**, not atomic mass.

Scientists have been adding elements to the periodic table, as more are discovered or created.

The last naturally occurring element to be discovered is Francium (Fr) in 1939.

Concepts

70 years after Mendeleev, who had called it *eka-caesium*

The modern periodic table

LEV CONCEPTS

Concepts

Electron structure was discovered after the periodic table was developed...

Overlapping orbitals of boron

Key Concepts

Electron structure was discovered after the periodic table was developed...

Key concepts

2009-2010

Element #117 was discovered through a Russian-US collaboration. The discovery still needs to be confirmed. It is temporarily named ununseptium (Uus).

Discoveries are made all the time!

Summary

Elements in **the first periodic table** were arranged in order of increasing atomic mass

Summary

Elements in the modern periodic table are arranged in order of increasing atomic number

The modern periodic table shows trends or repeating patterns in atomic radii, electronegativity and ionization energy

