% .
' . 1 B
- “ \
:‘{' d \
B \ \
J ‘

AI.IT(\ SAR

Layered Software Architecture

AUTOSAR Classic Platform

@) & BOSCH) & (] PSA TOYOTA VOLKSWAGEN

™

Document Title Layered Software Architecture
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 53
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R22-11
AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Document Change HistoryM

Date Release [Changed by Change Description
2022-11-24|R22-11 |AUTOSAR > Incorporated new concepts for Vehicle-2-X Data Manager, MACsec, CAN XL, DDS,
Release Secured Time Synchronization, Vehicle-2-X Support for China
Management > Editorial changes
2021-11-25|R21-11 AUITOSAR > Incorporated draft concept for new Memory Driver and Memory Access
Release
Management
2020-11-30|R20-11 [AUTOSAR > Removed Pretended Networking
Release » Added caveats for E2E Protection Wrapper
Management > Layer Interaction Matrix: Allow Crypto Driver to access Memory Services
» Incorporated new concepts for Intrusion Detection System Manager, CP Software Clusters
2019-11-28 |[R19-11 [AUTOSAR > Incorporated new concepts for Atomic multicore safe operations, Signal-service-translation,
Release NV data handling enhancement
Management > Changed Document Status from Final to published
2018-10-31(4.4.0 AUTOSAR > Adopting LIN Slave Support, LinNm removed
Release » New Concepts: Key Management, 1stdraft of MCAL Multicore Distribution
Management > Editorial changes
2017-12-08|4.3.1 AUTOSAR » Editorial changes
Release
Management

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |[Changedby |Change Description
2016-11-30 (4.3.0 AUTOSAR > Incorporated new 4.3 concepts for Crypto Stack, Vehicle-2-X Communication, SOME/IP
Release Transport Protocol, DLT rework
Management |5 Removed obsolete Dbg module
» Editorial changes
2015-07-31|4.2.2 AUTOSAR » Editorial changes
Release
Management

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |[Changedby |Change Description
2014-10-31 (4.2.1 AUTOSAR > Incorporated new 4.2 concepts for: Switch Configuration; Sender-Receiver-Serialization;
Release CAN-FD; Large-Data-COM; E2E-Extension; Global Time Synchronization; Support for Post-
Management build ECU-Configuration; Secure-Onboard-Communication; ASIL/QM-Protection
» Introduction of new error classification
» Editorial changes
2014-03-3114.1.3 AUTOSAR » Editorial changes
Release
Management
2013-03-15]4.1.1 AUTOSAR > Clarification of partial network support for CAN/LIN slave.
Administration |3 New Ethernet stack extensions
» Added Crypto Service Manager to System Services
» Revised presentation of J1939 and added new J1939 modules
» Added new energy management concepts: “Pretended Networking”, “ECU Degradation”
» Added new modules: “Output Compare Unit Driver’ and “Time Service”
» Changed handling of Production Errors
» Fixed various typography and layout issues
2011-12-22 (4.0.3 AUTOSAR > Added a note for the R3-compatibility FlexRay Transport Layer FrArTp on slide "ki890".

Administration

» Added an overview chapter for energy management and partial networking
» Corrected examples regarding DEM symbol generation

» Fixed minor typography issues

» Clarification of term AUTOSAR-ECU on slide "94jt1"

» Corrected CDD access description for EcuM on slide "11123"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |[Changedby |Change Description
2009-12-18 |4.0.1 AUTOSAR | » Added a note regarding support for System Basis Chips on slide "94juq"
Administration | » Clarification of DBG and DLT text on slide "3edfg"
» Corrected DBG description on slide "11231"
2010-02-02 |3.1.4 AUTOSAR » The document has been newly structured. There are now 3 main parts:
Administration m Architecture
m Configuration
m Integration and Runtime Aspects
» The whole content has been updated to reflect the content of the R 4.0 specifications.
> Topics which have bee newly introduced or heavily extended inrelease 4.0 have been
added. E.g.,. Multi-Core Systems, Partitioning, Mode Management, Error Handling,
Reporting and Diagnostic, Debugging, Measurement and Calibration, Functional Safety etc
» Legal disclaimer revised
2008-08-13 |3.1.1 AUTOSAR » Legal disclaimer revised
Administration
2007-12-21 |3.0.1 AUTOSAR » Updates based on new wakeup/startup concepts

Administration

» Detailed explanation for post-build time configuration
» "Slimming" of LIN stack description

» ICC2 figure

» Document meta information extended

» Small layout adaptations made

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |Changedby |Change Description
2007-01-24 |2.1.15 AUTOSAR » ICC clustering added.
Administration | » Document contents harmonized
» Legal disclaimer revised
» Release Notes added
» “Advice for users” revised
» “Revision Information” added
2006-11-28 |2.1.1 AUTOSAR Rework Of:
Administration | > Error Handling
» Scheduling Mechanisms
» More updates according to architectural decisionsin R2.0
2006-01-02 |1.0.1 AUTOSAR » Correct version released
Administration
2005-05-31 |1.0.0 AUTOSAR > Initial release

Administration

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Disclaimer

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose
of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained inthis work is protected by copyright and other types of intellectual property rights. The commercial exploitation
of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any
other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the
publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive
applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

N
<
)
o
o
&
o

Introduction
Purpose and Inputs

Purpose of this document
The Layered Software Architecture describes the software architecture of AUTOSAR:

» it describes in an top-down approach the hierarchical structure of AUTOSAR software and
» maps the Basic Software Modules to software layers and
» shows their relationship.

This document does not contain requirements and is informative only. The examples given are
not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture:

> it does not specify a structural software architecture (design) with detailed static and dynamic
interface descriptions,

m these information are included in the specifications of the basic software modules
themselves.

Inputs
This document is based on specification and requirement documents of AUTOSAR.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

-
=,
N3
)
o
o)
@
o

Introduction
Scope and Extensibility

Application scopeof AUTOSAR
AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the following properties:

>
>
>

>
>

strong interaction with hardware (sensors and actuators),
connectionto vehicle networks like CAN, LIN, FlexRay or Ethernet,

microcontrollers (typically 16 or 32 bit) with limited resources of computing powerand memory (compared
with enterprise solutions),

Real Time System and
program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus peripherals and the according
software/configuration. The mechanical designis not in the scope of AUTOSAR. This means that if more than

one microcontrollerin arranged in a housing, then each microcontroller requires its own description of an
AUTOSAR-ECUinstance.

AUTOSAR extensibility
The AUTOSAR Software Architecture is a generic approach:
» standard modules can be extended in functionality, while still being compliant,

m still, their configuration has to be consideredin the automatic Basic SW configuration process!

» non-standard modules can be integrated into AUTOSAR-based systems as Complex Drivers and

» further layers cannot be added.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Top view

The AUTOSAR Architecture distinguishes on the highest abstraction level between three
software layers: Application, Runtime Environment and Basic Software which run on a
Microcontroller.

Application Layer

Runtime Environment (RTE)

Microcontroller

AUT@SAR Document ID 53 : R22-11

AUTOSAR_EXP_LayeredSoftwareArchitecture of 193

Architecture — Overview of Software Layers
Coarse view

™
=
I
o
[
(o)
@©
o

The AUTOSAR Basic Software is further divided in the layers: Services, ECU Abstraction,
Microcontroller Abstraction and Complex Drivers.

Application Layer

Runtime Environment

Microcontroller

AUT@SARW Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Detailed view

<
=
I
o
©
(o)
@©
o

The Basic Software Layers are further divided into functional groups. Examples of Services

are System, Memory and Communication Services.

Application Layer

Runtime Environment

=

AUTO SAR"

Microcontroller

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Microcontroller Abstraction Layer

©
=,
S
)
jo!
o
o
©
a

The Microcontroller Abstraction Layer is the
lowest software layer of the Basic Software.

It contains internal drivers, which are software

modules with direct access to the uC and
internal peripherals.

Task
Make higher software layers independent of puC

Microcontroller Abstraction Layer

Properties

Implementation: puC dependent

Upper Interface: standardized and pC
independent

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
ECU Abstraction Layer

N~
=,
<
(e}
je!
Q
(@]
@
o

The ECU Abstraction Layer interfaces the
drivers of the Microcontroller Abstraction

Layer. It also contains drivers for external
devices.

It offers an API for access to peripherals and
devices regardless of their location (uUC
internal/external) and their connection to the
UC (port pins, type of interface)

Microcontroller Abstraction Layer

Task

Make higher software layers independent of
ECU hardware layout

Properties

Implementation: pC independent, ECU hardware
dependent

Upper Interface: pC and ECU hardware
independent

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Complex Drivers

The Complex Drivers Layer spans from the
hardware to the RTE.

Task

Provide the possibility to integrate special purpose
functionality, e.g. drivers for devices:

» which are not specified within AUTOSAR,
» with very high timing constrains or
» for migration purposes etc.

Properties

Implementation: might be application, pC and ECU
hardware dependent

Upper Interface: might be application, uC and ECU
hardware dependent

AUTOSAR"

ECU Abstraction Layer

Microcontroller Abstraction Layer

Microcontroller

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

©
=
I
)
jo!
w
o
©
a

Architecture — Overview of Software Layers
Services Layer

The Services Layer is the highest layer of the Basic
Software which also applies for its relevance for
the application software: while access to I/O
signals is covered by the ECU Abstraction Layer,
the Services Layer offers:

Operating system functionality

Vehicle network communicationand management
services

>
>
» Memory services (NVRAM management)
>
>
>

Diagnostic Services (including UDS communication, error
memory and fault treatment)

ECU state management, mode management

Logicaland temporal program flow monitoring (Wdg
manager)

Task

Provide basic services for applications, RTE and
basic software modules.

Properties

Implementation: mostly uC and ECU hardware
independent

Upper Interface: uC and ECU hardware independent

AUTO SAR"

Services Layer

ECU Abstraction Layer

sJaAlQ
xajdwo)

Microcontroller Abstraction Layer

Microcontroller

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

o
=
I
)
S
o
o
©
a

Architecture — Overview of Software Layers
AUTOSAR Runtime Environment (RTE)

The RTE is a layer providing communication services

to the application software (AUTOSAR Software
Components and/or AUTOSAR Sensor/Actuator
components).

Above the RTE the software architecture style
changes from “layered” to “component style“.

The AUTOSAR Software Components communicate

with other components (inter and/or intra ECU)
and/or services via the RTE.

Task

Make AUTOSAR Software Components independent
from the mapping to a specificECU.

Properties

Implementation: ECU and application specific
(generated individually for each ECU)

Upper Interface: completely ECU independent

AUTO SAR"

AUTOSAR Runtime Environment (RTE)

Services Layer

ECU Abstraction Layer

SJIaAlQ
xa|dwod

Microcontroller Abstraction Layer

Microcontroller

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Introduction to types of services

™
QD
<
)
jo!
o
o
©
a

The Basic Software can be subdivided into the following types of services:

» Input/Output (I/O)
Standardized access to sensors, actuators and ECU onboard peripherals

» Memory
Standardized access to internal/external memory (non volatile memory)

» Crypto
Standardized access to cryptographic primitives including internal/external hardware
accelerators

» Communication
Standardized access to: vehicle network systems, ECU onboard communication systems and
ECU internal SW

» Off-board Communication
Standardized access to: Vehicle-to-X communication, in vehicle wireless network systems,
ECU off-board communication systems

» System

Provision of standardizeable (operating system, timers, error memory) and ECU specific (ECU
state management, watchdog manager) services and library functions

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Introduction to Basic Software Module Types
Driver (internal)

3
3
(e}
ke
©
()]
&
o

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are:
> Internal EEPROM

> Internal CAN controller
> Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller
Abstraction Layer.

AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Introduction to Basic Software Module Types
Driver (external)

o
=,
I
)
jo!
o
o
©
a

External devices are located on the ECU hardware outside the microcontroller. Examples for
external devices are:

> External EEPROM
» External watchdog
> External flash

A driver for an external device is called external driver and is located in the ECU Abstraction
Layer. It accesses the external device via drivers of the Microcontroller Abstraction Layer.

This way also components integrated in System Basis Chips (SBCs) like transceivers and
watchdogs are supported by AUTOSAR.

» Example: a driver for an external EEPROM with SPI interface accesses the external
EEPROM via the handler/driver for the SPI bus.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the
microcontroller directly. Those external drivers are located in the Microcontroller Abstraction

Layer because they are microcontroller dependent.

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Introduction to Basic Software Module Types
Interface

An Interface (interface module) contains the functionality to abstract from modules which are
architecturally placed below them. E.g., an interface module which abstracts from the
hardware realization of a specific device. It provides a generic API to access a specific type of
device independent on the number of existing devices of that type and independent on the
hardware realization of the different devices.

The interface does not change the content of the data.

In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN
communication networks independent on the number of CAN Controllers within an ECU and
independent of the hardware realization (on chip, off chip).

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Introduction to Basic Software Module Types
Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous
access of one or multiple clients to one or more drivers. l.e. it performs buffering, queuing,
arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC
Driver).

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Introduction to Basic Software Module Types
Manager

N
o
<
)
jo!
o
o
©
a

A manager offers specific services for multiple clients. Itis needed in all cases where pure
handler functionality is not enough to abstract from multiple clients.

Besides handler functionality, a manager can evaluate and change or adapt the content of the
data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external

memory devices like flash and EEPROM memory. It also performs distributed and reliable
data storage, data checking, provision of default values etc.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

N
R
>
S
jo!
o
o
©
a

Architecture — Overview of Software Layers
Introduction to Libraries

Libraries are a collection of functions for
related purposes

Libraries:

» can be called by BSW modules (that
including the RTE), SW-Cs, libraries
or integration code

run in the context of the caller in the
same protection environment

can only call libraries

are re-entrant

do not have internal states

do not require any initialization

are synchronous, i.e. they do not have
wait points

Y
AUTOSAR Libraries

YV V V V VY

The following libraries are

specified within AUTOSAR:

Fixed point mathematical, » Extended functions (e.g. 64bits » CRC calculation,

Floating point mathematical, calculation, filtering, etc.) > Atomic multicore safe operations
Interpolation for fixed point data, Bit handling,

Interpolation for floating point data, E2E communication,

YV V V V
A\

A\

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Microcontroller Abstraction Layer RTE

N
<
=
5
jo!
o
o
©
a

The uC Abstraction Layer consists of the following module groups:

> Microcontroller Drivers _
Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)

Functions with direct uC access (e.g. Core test)
» Communication Drivers

Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN).

OSl-Layer: Part of Data Link Layer

» Memory Drivers _ _ _ _
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices

(e.g. external Flash)

» 1/0O Drivers:
Drivers for analog and digital /O (e.g. ADC, PWM, DIO)

» Crypto Drivers Drivers for on-chip crypto devices like SHE or HSM

» Wireless Communication Drivers: Drivers for wireless network systems (in-vehicle or off-board communication) Group of
: : o : : : Software
Microcontroller Drivers Memory Drivers Crypto Communication Drivers Wireless VO Drivers modules of
Drivers Comm. — similartype
Drivers
I 4
< =3 5' n %
N = 2 | m o
ol B . 3| & Q E=hl = o | = » ol & > ol &
83| B |g| EB|Bl5lml s| E|EEls% & &gz Blee Software
21| g || =| | B38| 9| =2 g 5z 3 g| 9| 9| 9| 9| g module
s 9| 5 | 8| 2| 8|2|=| 2| ol &|s&|2g & 5| 3| 5| 8| 8| 3
= < = — = Q = = — > o — e = @ i = 2
e = 3 S = =4 7
= < - <
© w
internal
peripheral
_ % device
Microcontroller
I 4

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Microcontroller Abstraction Layer: SPIHandlerDriver

The SPIHandlerDriver allows concurrent
access of several clients to one or more SPI

busses.

To abstract all features of a SPI microcontroller
pins dedicated to Chip Select, those shall
directly be handled by the SPIHandlerDriver.
That means those pins shall not be available
in DIO Driver.

Example:

Application Layer

RTE

Microcontroller (uC)

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Complex Drivers RTE

A ComplexDriver is a module which implements non-
standardized functionality within the basic software
stack.

<o
An example is to implementcomplexsensor

evaluation and actuator control with directaccess
to the pC using specific interrupts and/or complex Example:
UC peripherals (like PCP, TPU), e.g.

» Injection control
» Electric valve control
» Incremental position detection

3
z M
T . O ('BD 0} —
ask: S =2 B8
QO =,
Fulfill the special functional and timing requirements 5 0| < =
for handling complex sensors and actuators o all 2| 5
8 =l o]l 2
O S S
Properties: & g S
Implementation: highly uC, ECU and application g
dependent

Upper Interface to SW-Cs: specified and implemented
according to AUTOSAR (AUTOSAR interface)

Lower interface: restricted access to Standardized
Interfaces

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
ECU Abstraction: I/O Hardware Abstraction

The I/O Hardware Abstraction is a group of modules
which abstracts from the location of peripheral I/O
devices (on-chip or on-board) and the ECU
hardware layout (e.g. uC pin connections and
signal level inversions). The I/O Hardware
Abstractiondoes not abstract from the
sensors/actuators!

The different1/O devices might be accessedvia an /O
signal interface.

Task:

Represent1/O signals as they are connected to the
ECU hardware (e.g. current, voltage, frequency).

Hide ECU hardware and layout properties from higher
software layers.

Properties:

Implementation: uC independent, ECU hardware
dependent
Upper Interface: uC and ECU hardware independent,

dependenton signal type specified and
implemented according to AUTOSAR (AUTOSAR

interface)

AUTO SAR"

Application Layer

RTE

Communi-
cation
Drivers

/o
Drivers

Microcontroller (uC)

Example:

/O Signal Interface

Driver for ext. Driver for ext.
ADC ASIC /O ASIC

COM Drivers IO Drivers
wn o} >
Q2 o 3
< % o o
DRo! = =
@ @ @

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

N
£
N
N
jo!
o
o
©
a

Architecture — Content of Software Layers

Application Layer

ECU Abstraction: Communication Hardware Abstraction RTE

The Communication Hardware Abstraction isa
group of modules which abstracts from the
location of communication controllers and the ECU
hardware layout. For all communication systems a
specific Communication Hardware Abstractionis
required (e.g. forLIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal
CAN channels and an additional on-board ASIC
with 4 CAN controllers. The CAN-ASIC s
connected to the microcontrollervia SPI.

The communicationdrivers are accessed via bus
specificinterfaces (e.g. CAN Interface).

Task:

Provide equal mechanisms to access a bus channel
regardless of it's location (on-chip / on-board)

Properties:

Implementation: uC independent, ECU hardware
dependentand external device dependent

Upper Interface: bus dependent, uC and ECU
hardware independent

AUTO SAR"

Communi-
cation
Drivers

/o
Drivers

Microcontroller (UC)

Example:

CAN Interface

Driver for ext.
CANASIC

/O Drivers Communication Drivers

J1eNIA OId
1aALQg
J9IPUBHIAS

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

I8N NYD

Architecture — Content of Software Layers Application Layer
Scope: Memory Hardware Abstraction RTE
The Memory Hardware Abstractionis a group of
modules which abstracts from the location of -
peripheral memorydevices (on-chip or on-board) Memory Commun-
and the ECU hardware layout. Drivers Sehon
Example: on-chip EEPROMand external EEPROM Microcontroller (4C)
devices are accessible via the same
mechanism.

The memorydrivers are accessed via memory specific Example:

abstraction/emulation modules (e.g. EEPROM

Abstraction). oy Absitaction nterf
. mor straction Interrace
By emulating an EEPROM abstraction on top of Flash .
hardware units a commonaccessvia Memory : Flash EEPROM

EEPROM Abstraction =l

Abstraction Interface to both types of hardware is

enabled.
EEPROM Driver Flash Driver
Task:

Provide equal mechanisms to access internal (on-chip)
and external (on-board) COM Drivers Memory Drivers

memory devices and type of memory hardware " -
(EEPROM, Flash). o2 _q% &3
52 53 93
: o) g ==
Properties: - =
Implementation: uC independent, external device
dependent

Upper Interface: uC, ECU hardware and memory
device independent

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer

Scope: Memory Hardware Abstraction {DRAFT} RTE

The Memory Hardware Abstractionis a group of
modules which abstracts from the location of -
peripheral memorydevices (on-chip or on-board) Memory Commun-
and the ECU hardware layout. Drivers Sehon

Example: on-chip EEPROMand external EEPROM

devices are accessible via the same
mechanism.

_ _ - Example:
The memorydrivers are accessedvia memory specific

abstraction/emulation modules (e.g. EEPROM

By emulating an EEPROM abstraction on top of Flash

hardware units a commonaccessvia Memory Abhroction
Abstraction Interface to both types of hardware is

enabled. Memory Access

External
Task: Memory Driver

Provide equal mechanisms to access internal (on-chip)

and external (on-board) COM Drivers Memory Drivers
memory devices and type of memory hardware o
(EEPROM, Flash). 9 F 5’.§ g’.§
Properties: -
Implementation: uC independent, external device
dependent

Upper Interface: uC, ECU hardware and memory
device independent

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Onboard Device Abstraction RTE
The Onboard Device Abstraction contains -’
drivers for ECU onboard devices which — T
cannot be seen as sensors or actuators like e S
internal or external watchdogs. Those

drivers access the ECU onboard devices via
the uC Abstraction Layer.

Example:

Task:

Abstract from ECU specific onboard devices. _
Watchdog Interface
Watchdog Driver

Pro pertles : COM Drivers Microc_ontroller
Implementation: pC independent, external " DIvers
. 3
device dependent 2% 253
e 228

Upper Interface: uC independent, partly ECU
hardware dependent

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Scope: Crypto Hardware Abstraction

The Crypto Hardware Abstraction is a group of
modules which abstracts from the location of
cryptographic primitives (internal- or external
hardware or software-based).

Example: AES primitive is realized in SHE or provided
as software library

Task:

Provide equal mechanisms to access internal (on-chip)
and software _
cryptographic devices.

Properties:
Implementation: uC independent

Upper Interface: uC, ECU hardware and crypto device
independent

AUTO SAR"

Application Layer

RTE

Crypto
Services

B0
BN

Microcontroller (uC)

Example:

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

8| Architecture — Content of Software Layers Application Layer
sl Services: Crypto Services s
= Crypto
Services
The Crypto Services consist of three modules Crypto HW
> the Crypto Service Manager is responsible forthe 22::0
management of cryptographic jobs Drivers
> the Key Manager interacts with the key provisioning

master (either in NVM or Crypto Driver) and
manages the storage and verification of certificate
chains

» The Intrusion Detection System Manager is

responsible forhandling security events reported
by BSW modules or SW-C

Example:
Task: Crypto Services
Provide cryptographic primitives, IDS services and key
storage to the application in a uniform way. S— meuson
Abstractfrom hardware devices and properties. RN Manager S
Properties:
Implementation: uC and ECU hardware independent,
highly configurable

Upper Interface: uC and ECU hardware independent
specified and implemented according to AUTOSAR
(AUTOSAR interface)

AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Services — General RTE

Communi-
cation
Services

The Communication Services are a group of
modaules for vehicle network communication (CAN,
LIN, FlexRay and Ethernet). They interface with

the communicationdrivers via the communication
hardware abstraction.

Task:
Provide a uniform interface to the vehicle network for
communication.
Provide uniform services for network management

Provide uniform interface to the vehicle network for Example:
| diagnostic communication | S
Hide protocoland message properties from the L. 0 o Generic
. . 5 = Q — > o e [NM
application. : § 2 5 8‘§ E ;@ ‘_.‘% Interface
sl 23 <9 20|38 85
Properties: 7 28 SRR .
. = «Q <BUS
; ; specific>
Implementation: uC and ECU HW independent, partly ol = State <Bus
dependenton bus type g é g PDU Router Manager Speli:"i\;ic>
) E2E =0 z
Upper Interface: pC, ECU hardware and bus type Transformer | 29| 5 T
Independent §' 8 % Transport
= = Protocol
The communicationservices will be detailed for each] —
relevant vehicle network system on the following R
pages.
AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — CAN

i

CAN
State
Manager

CAN Transport
Protocol

CAN Interface

CAN Transceiver . Driver for ext.
Driver I CANASIC

External
CAN Controller

AUTO SAR"

Application Layer

RTE

Microcontroller (uC)

The CAN Communication Services are a group of
modules for vehicle network communication with the
communication system CAN.

Task:

» Provide a uniform interface to the CAN network.
Hide protocol and message properties from the
application.

The CAN Communication Stack supports:

» Classic CAN communication (CAN 2.0)

» CAN FD communication, if supported by hardware
» CAN XL communication, if supported by hardware

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — CAN RTE

Communi-
cation

Services

Properties:
> Implementation: uC and ECU HW independent, partly ﬁ S
dependent on CAN. Sation Drivers

> AUTOSAR COM, Generic NM (Network Management)

Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

» Generic NM Interface contains only a dispatcher. No
further functionality is included. In case of gateway ECUs it
can also include the NM coordinator functionality which
allows to synchronize multiple different networks (of the
same or different types) to synchronously wake them up or
shut them down.

» CAN NM is specific for CAN networks and will be
instantiated per CAN vehicle network system.

» The communication system specific Can State Manager
handles the communication system dependent Start-up
and Shutdown features. Furthermore it controls the
different options of COM to send PDUs and to monitor
signal timeouts.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — Ethernet/CAN XL

Example:

Socket Adaptor

TCP/IP Communication Services

Ethernet Interface

CAN XL Controller

AUTO SAR"

Application Layer

RTE

Microcontroller (uC)

CAN XL supports to directly tunnel IEEE 802.3
Ethernet frames for participation of IP
communication.

Task:

» Provide vehicle wide communication with
same semantic used everywhere regardless
physical connection (CAN XL / Ethernet) or
communication paradigm (Signal- and
Service-based communication).

Document ID 53 :
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack Extension — CAN XL RTE

Communi-
cation

Services

Properties: -

» CAN XL is an absolute superset to CAN, i.e. a CAN stack CommunE 10
which supports CAN XL can serve both a CAN and a CAN Drivers DIVErS
XL bus.

» Canlf, CanTrcvDrv and CanDrv are the only modules
which need extensions to serve CAN XL communication.

» The properties of the communication stack CAN are also
true for CAN with CAN XL functionality.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack Extension — TTCAN

CAN Transport
Protocol

CAN Interface

CAN Transceiver Driver for ext.
Driver CANASIC

CAN Driver

External
TTCAN Controller

AUTO SAR"

Application Layer

RTE

Microcontroller (UC)

The TTCAN Communication Services are the
optional extensions of the plain CAN Interface and
CAN Driver module for vehicle network communi-
cation with the communication system TTCAN.

Task:

> Provide a uniform interface to the TTCAN network.

Hide protocol and message properties from the
application.

Please Note;

» The CAN Interface with TTCAN can serve both a
plain CAN Driver and a CAN Driver TTCAN.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack Extension — TTCAN

Properties:

» TTCAN is an absolute superset to CAN, i.e. a CAN stack
which supports TTCAN can serve both a CAN and a
TTCAN bus.

» Canlf and CanDrv are the only modules which need
extensions to serve TTCAN communication.

» The properties of the communication stack CAN are also
true for CAN with TTCAN functionality.

AUTO SAR"

Application Layer

RTE

Communi-
cation
Services

Communi-
cation
Drivers

Microcontroller (uC)

/o
Drivers

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack Extension —J1939

Al

CAN J1939
Transport Transport
Protocol Protocol

o
=
(o
o
()
o))
I}
o

Example:

o

Jabeuey arels

AN 6€6TC

CAN Interface

CAN Transceiver Driver for ext.
Driver CANASIC

-
uC

External
CAN Controller

AUTO SAR"

Application Layer

RTE

Microcontroller (UC)

The J1939 Communication Services extend the plain CAN
communication stack for vehicle network communication in
heavy duty vehicles.

Task:

» Provide the protocol services required by J1939. Hide

protocoland message properties from the application where
not required.

Please Note:

» There are two transport protocolmodules in the CAN stack
(CanTp and J1939Tp)which can be used alternatively orin
parallel on differentchannels:. They are used as follows:

m CanTp: SO Diagnostics (DCM), large PDU transport
on standard CAN bus

m J1939Tp: J1939 Diagnostics, large PDU transport on
J1939 driven CAN bus

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer
Communication Stack Extension —J1939

o)
=
o
o)
je!
Q
(@]
@
o

RTE

Communi-
cation
Services

Properties: -

> Implementation: pC and ECU HW independent, based on o S
CAN. cetion Drivers

Drivers
» AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

» Supports dynamic frame identifiers that are not known at
configuration time.

» J1939 network management handles assignment of unique
addresses to each ECU but does not support

sleep/wakeup handling and related concepts like partial
networking.

» Provides J1939 diagnostics and request handling.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — LIN RTE

Microcontroller (uC)

LIN State ‘ The LIN Communication Services are a group of modules for vehicle
Manager network communication with the communication system LIN.

Task:

Provide a uniform interface to the LIN network. Hide protocoland
message properties from the application.

LIN Interface Properties:
HIN Transceiver Do et The LIN Communication Services contain:
» An IS0 17987 compliantcommunication stack with

m Schedule table manager to handle requests to switch to other
schedule tables (for LIN master nodes)
m Communication handling of different LIN frame types

LIN Driver
ucC

m A WakeUp and Sleep Interface
» Anunderlying LIN Driver:
m Implementing LIN protocol and accessing the specific hardware

m Supporting both simple UART and complexframe based LIN
hardware

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — LIN RTE
“oaton
Services
Note: Integration of LIN into AUTOSAR: -
> LIN Interface controls the WakeUp/Sleep API Commin:
and allows the slaves to keep the bus awake _ Dxivers
(decentranzed approach)_

» The communication system specific LIN State
Manager handles the communication
dependent Start-up and Shutdown features.
Furthermore it controls the communication
mode requests from the Communication
Manager. The LIN State Manager also
controls the [-PDU groups by interfacing
COM.

» When sending a LIN frame, the LIN Interface
requests the data for the frame (I-PDU) from
the PDU Router at the point in time when it
requires the data (i.e. right before sending
the LIN frame).

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — FlexRay

-

FlexRay
NM

page id: ki890

Example:

FlexRay
State
Manager

FlexRay Transport
Protocol
FlexRay Interface

Driver for FlexRay Driver for external
Transceiver FlexRay Controller

Driver for internal
FlexRay Controller

Host pC Internal FlexRay Controller

Data lines
External External

FlexRay Controller FlexRay Transceiver Control/status lines

(e.g. MFR 4200) (e.g. TJA 1080)

AUTO SAR"

Application Layer

RTE

Microcontroller (UC)

The FlexRay Communication Services are a group

of modules for vehicle network communication with
the communication system FlexRay.

Task:

» Provide a uniform interface to the FlexRay network.

Hide protocoland message properties from the
application.

Please Note:

» There are two transport protocol modules in the
FlexRay stack which can be used alternatively

m FrTp: FlexRay ISO Transport Layer

m FrArTp: FlexRay AUTOSAR Transport Layer,
provides bus compatibilityto AUTOSAR R3.x

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — FlexRay RTE
Comr_nuni-
S
Properties: -
» Implementation: uC and ECU HW independent, Cormunt
partly dependenton FlexRay. Drvers

> AUTOSAR COM, Generic NM Interface and

Diagnostic Communication Manager are the same
for all vehicle network systems and exist as one
instance per ECU.

» Generic NM Interface contains only a dispatcher.
No further functionality is included. In case of
gateway ECUs, it is replaced by the NM
Coordinatorwhich in addition provides the
functionality to synchronize multiple different
networks (of the same or differenttypes) to
synchronously wake them up or shut them down.

» FlexRay NM is specific for FlexRay networks and is
instantiated per FlexRay vehicle network system.

» The communication system specific FlexRay State
Manager handles the communication system
dependent Start-up and Shutdown features.
Furthermore it controls the different options of COM
to send PDUs and to monitor signal timeouts.

AUTO SAR"

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — TCP/IP RTE

‘ Microcontroller (uC)
Ethernet

State The TCP/IP Communication Services are a
HAneaEt group of modules for vehicle network
communication with the communication
system TCP/IP.

Socket Adaptor

TCP/IP Communication Services

Task:
Ethernet Interface
T ——— » Provide a uniform interface to the TCP/IP
Ethernet Transceiver Driver network. Hide protocol and message

properties from the application.

Ethernet Driver

External
Ethernet Controller

Document ID 53 :
AUTOSAR_EXP_LayeredSoftwareArchitecture

-
©
)
o
o

=
@
o)
©
o

Architecture — Content of Software Layers
Communication Stack — TCP/IP

Properties:

» The Tcplp module implements the main
protocols of the TCP/IP protocol family
(TCP, UDP, IPv4, IPv6, ARP, ICMP, DHCP)
and provides dynamic, socket based
communication via Ethernet.

» The Socket Adaptor module (SoAd) is the

sole upper layer module of the Tcplp
module.

AUTO SAR"

Application Layer

RTE

Communi-
cation
Services

Communi-
cation

Drivers

Microcontroller (uC)

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — DDS

Application Layer

RTE

Example:

Microcontroller (uC)
Ethernet

State The Data Distribution Services is a module
vanager for data-oriented vehicle network
communication.

Socket Adaptor

TCP/IP Communication Services

Task:
e e > Provide the DDS standard interfaces.

Ethernet Switch Driver

Ethernet Transceiver Driver

The DDS module supports:
» Signal Base Publisher/Subscriber

Ethernet Driver communication path
» QoS handling
» Full static configuration

External
Ethernet Controller

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — DDS

Properties:

» The DDS module relies on unserialized data
as input, so it can implement all the features
of the Object Management Group (OMG)
DDS standard.

» The Socket Adaptor module (SoAd) is the
sole module able to handle the DDS-PDUs
by means of the PDU Router (PduR).

» The DDS module provides E2E features and
security services itself.

AUTO SAR"

Application Layer

RTE

Communi-
cation

Services

Communi-
cation
Drivers

Microcontroller (uC)

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — General

General communication stack properties:

» A signal gateway is part of AUTOSAR COM to route
signals.

PDU based Gateway is part of PDU router.

IPDU multiplexing provides the possibility to add
information to enable the multiplexing of I-PDUs (different
contents but same IDs on the bus).

» Multi I-PDU to container mapping provides the possibility to
combine several I-PDUs into one larger (container-)I-PDU
to be transmitted in one (bus specific) frame.

» Upper Interface: uC, ECU hardware and network type
independent.

» For refinement of GW architecture please refer to
“‘Example Communication”

vV VYV

AUTO SAR"

Application Layer

RTE

Communi-
cation
Services

Communi-
cation
Drivers

Microcontroller (uC)

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Off-board Communication Stack — European Vehicle-2-X

RT
Example: -
I N

V2X Data
Manager

V2X Facilities
Microcontroller (uC)

E

)
o
2

<

ko)
o
o)
@
o

<
X
2 _ The European Vehicle-2-X Communication
8 Tranenort Services are a group of modules for Vehicle-to-
g Protocol X communication via an ad-hoc wireless
network.
s » Facilities: implement the functionality for reception and

Netw orking

transmission of standardized V2X messages, build the
interface for vehicle specific SW-Cs

» Basic Transport Protocol = Layer 4

> Geo-Networking = Layer 3 (Addressing based on
geographic areas, the respective Ethernet frames have their
own Ether-Type)

» V2X Management: manages cross-layer functionality (like
dynamic congestion control, security, position and time)

> V2X Data Manager: manages the receiving and
transformation of V2X messages and sends them through
RTE to SW-Cs or via SOME/IP

Wireless Ethernet Driver

Task:
> Provide a uniform interface to the Wireless
Ethernet network. Hide protocol and message
External properties from the application.

Wireless Ethernet Controller

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Off-board Communication Stack — Chinese Vehicle-2-X

Example:

V2X Data

Chinese V2X Message
Chinese V2X Chinese_VZX
Management Security The Chinese Vehicle-2-X Communication Services
are a group of modules based on cellular based
Chinese V2X Netw ork V2X technology following Chinese V2X standards.

» Message: implement the functionality for reception and
transmission of standardized Chinese V2X message, build the
interface for vehicle specific SW-Cs; implement management
functionalities related to Message Layer(sending frequency,

| Position and Time, message Identifiers)

» Security: implement the functionality of message encapsulation,
‘ decapsulation and pseudonym management

» Network: message reception and transmission,Layer-2 IDs

Cellular V2X Driver
(For External Controller)

settings, etc.
» Management: manage cross-Layer functionality(such as
(Sﬁ"ﬂiﬁI};IZgoarxg) Dedicated Service Advertisement, etc.)
Task:
» Provide a uniform interface to the cellular
based V2X network. Hide protocol and
External Cellular V2x message properties from the application.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer
Services: Memory Services

—
=
©
°
o
e
)
=)
]
o

RTE

Memory
Services

The Memory Services consist of one module,
the NVRAM Manager. It is responsible for
the management of non volatile data

(readwrite from different memory drivers)

Task: Provide non volatile data to the
application in a uniform way. Abstract from
memory locations and properties. Provide
mechanisms for non volatile data
management like saving, loading, checksum Example:
protection and verification, reliable storage MBIy EETSEs
etc.

NVRAM Manager

Properties:

Implementation: uC and ECU hardware
independent, highly configurable

Upper Interface: pC and ECU hardware
independent specified and implemented
according to AUTOSAR
(AUTOSAR interface)

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Services: System Services

The System Services are a group of modules
and functions which can be used by modules
of all layers. Examples are Real Time
Operating System (which includes timer
services) and Error Manager.

Some of these services are:

» WC dependent(like OS), and may supportspecial
HUC capabilities (like Time Service),

> partly ECU hardware and application dependent
(like ECU State Manager) or

» hardware and pC independent.

Task:

Provide basic services for application and
basic software modules.

Properties:

Implementation: partly uC, ECU hardware and
application specific

Upper Interface: pC and ECU hardware
independent

AUTO SAR"

Application Layer

RTE

System Services

Microcontroller (uC)

Example:
System Services
o W
v
o| I| | &% 5 50| 58
58| 53| &| 3| | B| Eg| B
SESHI BN S| §= > 3 D
D 3 D5 & = % =a Qg Q o
@ O () ~ 5 o — = S,
o2 | 8>3 gﬂ:l D > Jnl =8 ®c @
= = 9‘— = Q N S @ CQQ _‘E. /\g
~ © Ag— 59‘ D o = S § ~ O W o
T I& 4 =2 | 38| 92| 3
3¢| S5 3| od 3 8| 2¢ é§
= 3 ®
e | 7
3| ¢
> —~ @
Pyl o
o) c?
%] S§
>
&
@

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Error Handling, Reporting and Diagnostic RTE

’C-

Microcontroller (uC)

=2
“
°
Q
™
e
)
=}
@©
o

Application Layer

AUTOSAR Runtime Environment (RTE)

There are dedicated modules for different aspects
of error handling in AUTOSAR. E.g.:

» The Diagnostic Event Manager is responsible
for processing and storing diagnostic events
(errors) and associated FreezeFrame data.

» The module Diagnostic Log and Trace
supports logging and tracing of applications. It
collects user defined log messages and converts
them into a standardized format.

Microcontroller

» All detected development errors in the Basic Software are reported to Default Error Tracer.
» The Diagnostic Communication Manager provides a common API for diagnostic services
> etc.

AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer: Sensor/Actuator Software Components e

X
7
X

g
)
(o)
@
o

The Sensor/Actuator AUTOSAR Software
Component is a specific type of AUTOSAR
Software Component for sensor evaluation
and actuator control. Though not belonging
to the AUTOSAR Basic Software, itis
described here due to its strong relationship
to local signals. It has been decided to locate
the Sensor/Actuator SW Components above

_ _ Example:
the RTE for integration reasons
(standardized interface implementation and —
interface description). Because of their Application Layer
strong interaction with raw local signals,
relocatability is restricted feator Sensor
. Software Software
Component Component
Task:
Provide an abstraction from the specific RTE
physical properties of hardware sensors and
actuators, which are connected to an ECU. Basic Software

Interfaces to (e.g.)
. * /O HW Abstraction (access to I/O signals)
Pro P erties: » Memory Services (access to calibration data)

. . » System Services (access to Error Manager)
Implementation: uC and ECU HW independent,
sensor and actuator dependent

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Example of a Layered Software Architecture for Multi-Core Microcontroller

ECU —

core O: core 1.
partition O: partition 1:

(@]
=
—
i
2
o
>
I
o

Application Layer

13[]0J1U020.2IW 3109 OM) & YIIM NDJ ue :ajdwex]

. ratin .
. Communi- Operating Communi-
System Services Memory cation System cation
Services Services Services
(Master) ECU State (Sateliite)
Manager
BSW Mode
Manager
Micro- Memory _I/O Micro- _ _I/O
controller Drivers Communi- Drivers controller Memory Communi- Drivers
Drivers (e.g. Flash cation Drivers (e.g. Master Drivers Drivers cation Drivers (e.g. Satellite
(e.g. MCU, 9. ' or direct (e.g. MCU, (e.g. RAM (e.g. CAN, or direct
RAM test, (e.g. ETH)
Core test, EEPROM) access for Core test, test) FR) access for
GPT) DIO) GPT) DIO)

Microcontroller (UC)

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Detailed View of Distributed BSW Modules

» BSW modules can be distributed across ECU ﬁiﬂ
several partitions and cores. All partitions
share the same code.

> Modules can either be completely identical on partition O: partition 1
each partition, as shown for the DIO driver out
of 1/0O stack in the figure.

» As an alternative, they can use core-
dependent branching to realize different

core O: core 1:

Application Layer

behavior. Com service and PWM driver use L ol
master-satellite communication for processing ﬁm b 32%523
a call to the master from the according ster e (Satelite)
satellites.

m The communication between master and
satellite is not standardized. For example,
it can be based on functions provided by
the BSW scheduler or on shared memory.

PWM . M

» The arrows indicate which components are DO | oo relite ter
involved in the handling of a service call,

depending on the approach to distribution and
on the origin of the call. Microcontroller (uUC)

AUTO SAR"

13[]0J1U020.2IW 3109 OM) & YIIM NDJ ue :ajdwex]

.

/O
Driver Driyer

]

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions

ECU

core O: core 1:

partition O: partition 1: partition 2: partition 3: partition 4

Application Layer

BswM BswM BswM BswM BswM
EcuM EcuM
(ON) ON}

Microcontroller (uC)

» Basic Software Mode Manager (BswM) in every partition that runs BSW modules
m all these partitions are trusted

» One EcuM per core (each in a trusted partition)

» EcuM on that core that gets started via the boot-loaderis the master EcuM
m Master EcuM starts all Satellite EcuMs

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Scope: Multi-Core System Services RTE

System Services

» The IOC, as shown in the figure, provides communication
services which can be accessed by clients which need
to communicate across OS-Application boundaries on
the same ECU. The IOC is part of the OS.

» BSW modules can be executable on several cores, such

as the ComM in the figure. The core responsible for executing
a service is determined at runtime.

» Every core runs a kind of ECU state management.

m]

Y Microcontroller]

3 core O: core 1:

=3

) . .

- System Services System Services

@ [| e S e e

5 - ! :

m g 8 Al) = |§ :

@) = i 5 g 8 5 =3 s 8
o @ = = (@) o @ Q

S g 3 9z | gz | E5| £3 530 58 g5 | B2e8 53

s & sell 3 P2=2f 282 sS M 2% G '8, 35

= 225 2= 8 &3 &5 &2 €5 sxg| 1281 &3

= 380 0 =z || %5 ®C f2| S%a 280| [lgai %2

o 55 2| 2 g 2 S s 2 g -

— 8%’- w @ > = % g% :H :

E S = . __|

(@)

(]

o

® 3_c>| E

3. 2 2

S e e

8))

o @ %)

>

=

=

=4

o)

-

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Overview of AUTOSAR safety handling

» AUTOSAR offers a flexible
approach to support
safety relevant ECUs. Two QM Application ASIL Application
methods can be used:

1. All BSW modules
are developed
according to the
required ASIL

2. Selected modules
are developed
accordlng to ASIL BSW BSW BSW BSW BSW
AS'L and non- AS”_ oS modules modules modules modules modules
modules are
separated into
different partitions
(BSW distribution)

BYW partition —{all modules ASIL

Hardware

Note: The partitions are based on OS-

Applications. The TRUSTED attribute

of the OS-Application is not related to Example for usage of method (1)
ASIL/non-ASIL.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
AUTOSAR BSW distribution for safety systems

» Example of using different MCU
BSW partitions

m Watchdog stack is
placed in a own
partition

m ASIL and non-ASIL

SW-Cs can access -

WdgM via RTE

m Rest of BSW is placed
In own partition

QM Application ASIL Application

B S partition

-

Other BSW
0s modules
Wdglf

. Other BSW
] modules

)

Wdg

Hardware

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture
Overview of Modules — Implementation Conformance Class 3 - ICC3

page id: 9dfc8

This figure shows the mapping of basic software modules to AUTOSAR layers

Application Layer

AUTOSAR Runtime Environment (RTE)

xxX Interface

ext. Drv

Microcontroller

Not all modules are shown here

Document ID 53 : R22.11
AUTOSAR_EXP_LayeredSoftwareArchitecture of 193

Architecture
Overview of Modules — Implementation Conformance Classes — ICC2

o
L,
N
o
©
(o)
@©
o

The clustering shown in this document is the one defined by the project so far. AUTOSAR is currently not restricting the clustering
on ICC2 level to dedicated clusters as many different constraint and optimization criteria might lead to different ICC2

clusterings. There might be different AUTOSAR ICC2 clusterings against which compliancy can be stated based on a to be
defined approach for ICC2 compliance.

Application Layer

AUTOSAR Runtime Environment

== CHTIILIRT

_CANStMgr | .. ||

O
S

ECU Hardware

- ICC3 module

- - ICC2 clusters

Document ID 53 :
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture
Overview of Modules — Implementation Conformance Classes — ICC1

page id: 94t21

In a basic software which is compliant to ICC1 no modules or clusters are required.
The inner structure of this proprietary basic software is not specified.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

Document ID 53 :
AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture
Overview of Modules — Implementation Conformance Classes — behavior to the outside

Basic software (including the RTE) which is AUTOSAR compliant (ICC1-3) has to behave to the outside as specified by the ICC3
module specification.

For example the behavior towards:

» buses,

» boot loaders and

» Applications

Additionally, the ICC1/2 configuration shall be compatible regarding the system description as in ICC3.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

]

“ ICC 3 compliant
behavior

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

©
©
~
N
-
S
8]
(o))
©
o

Interfaces
Type of Interfaces in AUTOSAR

AUTOSAR Interface

An "AUTOSAR Interface" definesthe information exchanged between
software components and/or BSW modules. This descriptionis
independentof a specific programming language, ECU or network
technology. AUTOSAR Interfaces are used in defining the ports of
software-components and/or BSW modules. Throughthese ports
software-components and/or BSW modules can communicate with each
other (send or receive information or invoke services). AUTOSAR makes
it possible to implementthis communication between Software-
Components and/or BSW modules eitherlocally or via a network.

Standardized AUTOSAR
Interface

A "Standardized AUTOSAR Interface"is an "AUTOSAR Interface" whose
syntax and semantics are standardized in AUTOSAR. The "Standardized
AUTOSAR Interfaces" are typically used to define AUTOSAR Services,
which are standardized services provided by the AUTOSAR Basic
Software to the application Software-Components.

Standardized Interface

A "Standardized Interface" is an APl which is standardized within
AUTOSAR without using the "AUTOSAR Interface" technique. These
"Standardized Interfaces" are typically defined fora specific programming
language (like "C"). Because of this, "standardized interfaces" are
typically used between software-modules which are always on the same
ECU. When software modules communicate through a "standardized
interface", it is NOT possible any more to route the communication
betweenthe software-modulesthrough a network.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces
Components and interfaces

0
=,
I
)
S
o
o
©
a

view (simplified)

not specified
within AUTOSAR)

Note: This figure is incomplete with respect to

AUTO SAR"

ECU-Hardware

the possible interactions between the layers.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Application Actuator Sensor Application
AUTOSAR Software Software Software AUTOSAR Software
Software Component Component Component S ft Component
ortware
COTROE AUTOSAR AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface Interface
Interface
AUTOSAR Runtime Environment (RTE)
Standard
Standardized SfBT?)rS,IAZFi Standardized AUTOSAR AUTOSAR
Interface Interface Interface Interface
Interfaces: Interface
ﬁ Services Communication Ll
VFB & RTE Abstraction
relevant - . -
o0 Standardized Standardized Standardized
<:> RTE =D Interface Interface Interface
relevant =~ 3
Operating % 8- A Complex
= Bsw System |2 o Drivers
relevant 6 Standardized
2 Interface
Possib!e i'nterfaces
5 _'”;'dfe Microcontroller
a(f,’\'/%icﬁ g::re Abstraction

=
=
N
©
©
=
()
(o)
]
o

Interfaces: General Rules
General Interfacing Rules

Horizontal Interfaces

1111

Services Layer: horizontal interfaces are allowed
Example: Error Manager saves fault data using the
NVRAM manager

ECU Abstraction Layer: horizontal interfaces are
allowed

A complex driver may use selected other BSW
modules

UC Abstraction Layer: horizontal interfaces are not
allowed. Exception: configurable notifications are
allowed due to performance reasons.

$—
EaEie 3

N

-

Microcontroller (uC)

Vertical Interfaces
One Layer may access all interfaces of the SW layer
below

Bypassing of one software layer should be avoided

Bypassing of two or more software layers is not
allowed

Bypassing of the uC Abstraction Layer is not allowed

A module may access a lower layer module of
another layer group (e.g. SPIfor external hardware)

o NN @ @ & =

All layers may interact with system services.

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: General Rules
Layer Interaction Matrix

—
e
©
<
LS
e
)
=}
]
o

This normative matrix shows the allowed

interactions between §
. S
AUTOSAR Basic Software layers g
&
o
=
o
<
o
v =
allowed to use S
x not allowed to v 1A 1
use . VEIvVv]Iv s s Al x| <] v] x| x| x] x| x] %
A restricted use VIV v s x] Al x| x| x x| x| x| x| x| «
(Ca”baCkonly) VIVvIvIV]IVIALI s x| s x| v x| x| x|] %
o VIVIVvIVIVIA]L s s x| s v] x| <] x| x| x
The mE_BII‘IX is read restricted access -> see the following two slides
row-wise. VIl v]x]lx]x]|v]v]xlxlvv]xlx]|v1v
Example:“I/O V]] x] x| x| x| x| v]xlx|v]v]x]|x]|v]v
Dnvers are V]IV x| x| x| x| v]v]Isx]|vV]x]|v] x|V %
allowed to use : i : ;] : 17 ; xlx]x : ;
System Services - ull z Z - - Z Z ull ~
and Hardware, - il il Tl Wl B Z - il Bl e
but no other x| x| x| x| x| x| x s x| x| x| x| x| x
|ayerS”. v x| x| x| x| x| x| x| Al x| x| «x] x| x| %
V]x] x] x| x| x| x| Al x| x]|A] x| x| x|] v
(gray background indicates Jl el <l <] <1 « Al s Al <Al < <] <] A
“non-Basic Software”
layers)
*. includes wired and w ireless communication
AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces Application Layer
Interfacing with Complex Drivers (1) RTE

Complex Drivers may need to interface to other modules
in the layered software architecture, or modulesin
the layered software architecture may need to interface

to a ComplexDriver. Ifthis is the case, .

the following rules apply:

1. Interfacingfrom modulesofthe layeredsoftwarearchitectureto Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the accessing
AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implementthe interface module of a new bus system.
This is already taken care of within the configuration of the PDU Router.

2. Interfacingfroma Complex Driverto modules ofthe layered softwarearchitecture

Again, this is only allowed if the respective modules of the layered software architecture offerthe interfaces, and are
prepared to be accessed by a Complex Driver. Usually this means that

The respective interfaces are defined to be re-entrant.
If call back routines are used, the names are configurable

No upper module exists which does a management of states of the module (parallel access would change states
without being noticed by the upper module)

Y V V

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces Application Layer
Interfacing with Complex Drivers (2) RTE

In general,itis possibleto access the following modules:
» The SPIldriver
» The GPT driver

» The I/O drivers with the restriction that re-entrancy oftenonly exists

separate groups/channels/etc. Parallel access to the same
group/channel/etc. is mostly not allowed. This has to be taken care of during configuration.

The NVRAM Manager as exclusive access point to the memory stack

The Watchdog Manager as exclusive access point to the watchdog stack

The PDU Router as exclusive bus and protocolindependentaccess pointto the communication stack
The bus specific interface modules as exclusive bus specific access pointto the communication stack
The NM Interface Module as exclusive access pointto the network management stack

The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

Det, Dem and DIt
The OS as long as the used OS objects are not used by a module of the layered software architecture

Still, for each module it is necessaryto check if the respective functionis marked as being re-entrant. For example,
‘init’” functions are usually not re-entrant and should only be called by the ECU State Manager.

VV VVVVYVY

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces Application Layer
Interfacing with Complex Drivers (3) RTE

In case of multi-core architectures, there are additional rules:

>

AUTO SAR"

The BSW can be distributed across several cores. The core
responsible forexecuting a call to a BSW service is determined
by the task mapping of its BswOperationinvokedEvent.

Crossing partition and core boundaries is permitted for module icrocontroller (LC)

internal communication only, using a master/satellite implementation.

Consequently, if the CDD needs to access standardized interfaces of the BSW, it needs to reside on the same
core.

In case a CDD resides on a differentcore, it can use the normal port mechanismto access AUTOSAR interfaces
and standardized AUTOSAR interfaces. This invokes the RTE, which uses the IOC mechanism of the operating
system to transfer requests to the other core.

However, if the CDD needs to access standardized interfaces of the BSW and does not reside on the same core,

m either a satellite providing the standardized interface can run on the core where the CDD resides and forward
the call to the other core

m orastub part ofthe CDD needs to be implemented on the other core, and communicationneeds to be
organized CDD-local using the IOC mechanism of the operating system similar to what the RTE does.

Additionally, in the latter case the initialization part of the CDD also needs to reside in the stub part on the
differentcore.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Introduction

0
=
=
N
g
Q
(o))
@
o

The following pages explain using the example ,,memory“:

» What are the features / difference of the available memory service modules?
» How do the software layers interact?

» How do the software interfaces look like?

» What is inside the ECU Abstraction Layer?

» How can abstraction layers be implemented efficiently?

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Background: Comparison between memory service modules and memory types

» The different service modules (memory managers) abstract from the used non-volatile (NV) memory, but the properties of the
hardware impact their design and how access is realized.

» There are constraints on the use of the different listed modules depending on the properties of the used NV hardware.

» The following table lists the properties of the modules and related NV memory.

Module

NvM

BndM

FOTA
(manager)

AUTO SAR"

Use cases, features

Storage of module data (e.g. Error information,
special configuration info, status information,
diagnostic data, ...)

Supports many reader/writer (BSW and SW-C)
in parallel.

Mostly read during start-up and written in
shutdown, but intermediate reads/writes during
normal operation are also supported

Typical data size per user is bytes to some KiB

Storage of car specific data

(Very rare) Writes via diagnostics, only in
scontrolled environment® (e.g. repair shop)
Supports many readers (SW-C) in parallel
Users have direct access via pointer
Typical size many KiB

Storage of model specific car data/code
Very few users, typically only one

Typical size in MiB

Write new data in the background e.g. over
several driving cycles (interruptible and
preemptable update procedure)

Supported NV memory properties

Direct (memory mapped) and
indirect (e.g. via SPI) NV access
Serialized access (read-while-
write-in-same-HW-segment may
not work - NvM always buffer the
data)

Direct access of NV data (via
pointer) is required
Parallel read of NV data is required

Read-While-Write (e.g. via memory
abstraction/partitioning)

Example hardware

* Internal data flash

(via Flash eeprom
emulation)

* External eeprom/

data flash

* Internal data flash
* Internal code flash

* Internal and

external code flash

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”

Example and First Look

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

The ECU hardware includes an external EEPROM and an

external watchdog connected to the microcontroller via the
same SPI.

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

The Memory Abstraction Interface can be realized in the
following ways:

» routing during runtime based on device index (int/ext)

» routing during runtime based on the block index (e.g. >
Ox01FF = external EEPROM)

» routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists ,virtually®)

WdgIf Trigger ()

Spi ReadIB()
Spi WriteIB()

‘CS ‘SH ‘CS

External

Watchdog

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

External
EEPROM

‘ SPI

MemIf Read()
MemIf Write()

Fls Read()
Fls Write()

Interfaces: Interaction of Layers — Example “Memory”

Example and First Look {DRAFT}

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

The ECU hardware includes an external EEPROM and an

external watchdog connected to the microcontroller via the
same SPI.

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

The Memory Abstraction Interface can be realized in the
following ways:

» routing during runtime based on device index (int/ext)

» routing during runtime based on the block index (e.g. >
Ox01FF = external EEPROM)

» routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists ,virtually®)

WdgIf Trigger()

MemIf Read()
MemIf Write ()

Spi_ReadIB() Mem Read ()

Spi WritelIB () Mem Write ()

‘ CS, SHl

External
Watchdog

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Bulk NV Data Manager

Application Layer

Use-case Bulk NV Data Manager (BndM):
Persistent data which is very infrequently written

and additionally huge in size.

RTE

BndM GetBlockPtr () (C-func)

BndM WriteStart ()
BndM WriteBlock shortname ()
BndM WriteFinalize ()

External diagnostic request
(WriteDataByIdentifier)

Use-case NVRAM Manager (NvM):
Persistent data which is high frequently updated
or small in its size

TONNN Flash |

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
NvM Block Compression

» Use-case: large data blocks frequently written with only small local changes
m The actual algorithm is vendor-specific (block split, compression, delta,...)

NvM block compression

SW-C NviV Memlf

. NvM_WriteBloc

K
...]

: continue in
; NvM main function

MirrorCallback !
................... >

vendor specific
compression

|

o NvM_JobEndNotification

T
1
1
L

: Memlf Write

NvM_JobFinish

D‘ >

-

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Closer Look at Memory Hardware Abstraction

Architecture Description

The NVRAM Manager accessesdrivers via the
Memory Abstraction Interface. It addresses
differentmemory devices using a device index.

Interface Description

The Memory Abstraction Interface could have the
following interface (e.g. for the write function):

Std ReturnType MemIf Write
(

uint8 DevicelIndex,
uintlo BlockNumber,
uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash
EEPROM Emulation could have the following
interface (e.g. for the write function):

Std ReturnType Ea Write

(
uintlo BlockNumber,
uint8 *DataBufferPtr

NvM Write (BlockIndex)

MemIf Write (
DevicelIndex,
BlockNumber,
DataBufferPtr)

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

Situation 1: only one NV devicetypeused

This is the usual use case. In this situation, the Memory Abstraction can, in case of source code availability, be
implemented as a simple macro which neglects the Devicelndex parameter. The following example shows

the write function only:

File Memlf.h:
#include “Ea.h"“ /* for providing access to the EEPROM Abstraction */

#define MemIf Write (DeviceIndex, BlockNumber, DataBufferPtr) \
Ea Write (BlockNumber, DataBufferPtr)

File Memlf.c:
Does not exist

Result:
No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstractionor the Flash
Emulation directly.

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

Situation 2: two or more differenttypes of NV devices used

In this case the Devicelndexhas to be used for selecting the correct NV device. The implementation can also
be very efficientby using an array of pointers to function. The following example shows the write function
only:

File Memlf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf Write (DeviceIndex, BlockNumber, DataBufferPtr) \
WriteFctPtr[DevicelIndex] (BlockNumber, DataBufferPtr)

File Memlf.c:

#include “Ea.h"“ /* for getting the API function addresses */
#include “Fee.h“ /* for getting the API function addresses */
#include “MemIf.h"“ /* for getting the WriteFctPtrType */
const WriteFctPtrType WriteFctPtr[2] = {Ea Write, Fee Write};
Result:

The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.
The Memory Abstraction Interface causes no overhead.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Conclusion

Conclusions:

» Abstraction Layers can be implemented very efficiently

» Abstraction Layers can be scaled

» The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more
EEPROM and Flash devices

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Communication”

PDU Flow through the Layered Architecture

>

>

AUTO SAR"

Explanation of terms:

SDU

SDU is the abbreviation of “Service Data Unit”. It
Is the data passed by an upper layer, with the
requestto transmit the data. Itis as well the data
which is extracted after reception by the lower
layer and passed to the upper layer.

A SDU s part of a PDU.

PCI

PClis the abbreviation of “Protocol Control
Information”. This Informationis needed to pass a
SDU from one instance of a specific protocol layer
to another instance. E.g. it contains source and
target information.

The PClis added by a protocollayer on the
transmission side and is removed again on the
receiving side.

PDU

PDU is the abbreviation of “Protocol Data Unit”.
The PDU contains SDU and PCI.

On the transmission side the PDU is passed from
the L&P[?er layer to the lower layer, which interprets
this PDU as its SDU.

Layer N+1

data structure PDU ‘

LayerN Tx (*PDU) ;

void LayerN Tx(*SDU);

Layer N
PCl data structure
PDU

LayerN+1 Tx(*PDU);

void LayerN+l Tx (*SDU) ;
Layer N-1

< sDu

data structure

data structure

PCI data structure

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

N
s
Sy
)
jo!
o
o
©
a

Interfaces: Interaction of Layers
Example “Communication” (1)

SDU and PDU Naming Conventions

The naming of PDUs and SDUs respects the following rules:
<bus prefix> <layer prefix>- PDU
<bus prefix> <layer prefix>-SDU

For PDU:
For SDU:

The bus prefix and layer prefix are described inthe following table:

Application Layer

RTE

Communi-
cation
Services

COM HW
Abstr.

Communi-
cation
Drivers

Microcontroller (UC)

ISO Layer Layer AUTOSAR PDU Name | CAN/ LIN prefix | FlexRay
Prefix Modules TTCAN prefix
prefix
Layer 6: | COM, DCM I-PDU N/A
FIECIIE O | PDU router, PDU PDU N/A
(Interaction) .
multiplexer
Layer 3: N TP Layer N-PDU CAN SF LIN SF FR SF
Network Layer CANFF LIN FF FR FF
CAN CF LIN CF FR CF
CANFC LIN FC FR FC
Layer 2: L Driver, Interface L-PDU CAN LIN FR
Data Link Layer

Examples:
»|-PDU or I-SDU

»CAN FF N-PDU or FR CF N-SDU

»LIN L-PDU or FR L-SDU

AUTO SAR"

SF:

Single Frame
FF:

First Frame
CF:
Consecutive
Frame

FC.

Flow Control

For details on the frame types, please refer to the
AUTOSAR Transport Protocol specifications for CAN,TTCAN, LIN and FlexRay.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

=
S
=1
o)
[
(=)
It
Q

Interfaces: Interaction of Layers
Example “Communication” (2)

Components
» PDU Router:
m Provides routing of PDUs between different abstract communication controllers and upper layers
m Scale of the Router is ECU specific (down to no size if e.g. only one communication controller exists)
m Provides TP routing on-the-fly. Transfer of TP data is started before full TP data is buffered
» COM:
m Provides routing of individual signals or groups of signals between different -PDUs
» NM Coordinator:

m Synchronization of Network States of differentcommunication channels connected to an ECU via the
network managements handled by the NM Coordinator

» Communication State Managers:
m Start and Shutdown the hardware units of the communication systems via the interfaces
m Control PDU groups

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Communication” (3)

Communication
Manager

Secure Diagnostic Eth State CAN State LIN State Generic
Manager Manager Manager NM interface

Diagnostic
Log and
Trace

SOME/IP Onboard IPDU AUTOSAR Communi-
TP Communi- Multiplexer COM cation

cation Manager
9 NM

Coordinator

PDU Router

Ethernet Protocol

Connenside. -
’ CANTp
e bl m

LIN Interface
FlexRay Interf 2 .

Note: This image is notcomplete with 1The Interface between PduR and Tp differs significantlycompared to the interface between PduR and the Ifs.

respectto all internal communication In case of TP involvementa handshake mechanismis implemented allowing the transmission of |-Pdus > Frame size.

paths. 2 canlfwith TTCAN serves both CanDrv with or without TTCAN. Canlf without TTCAN cannotserve CanDrvwith TTCAN.
AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Communication” (4) — Ethernet Protocol

of and inside the Ethernet

protocol stack.
~ DoP |

Socket Adaptor

Messages Streams

| TCP

Services

IPacket ISegment

IPvANG |
ARP/ND ICMP |

Eth Interface
Eth Driver

TCP/IP Communication

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Communication” (5) - Ethernet and CAN communication using CAN XL

RTE

Communication
Manager

Secure Diagnostic CAN State Generic
NM interface

Diagnostic
Log and
Trace

SOME/IP Onboard IPDU AUTOSAR Communi-
TP Communi- Multiplexer COM cation
cation Manager

Manager

NM
Coordinator

PDU Router

Ethernet Protocol CDD

S m m

CAN XL Transceiver Eth Interface CAN Interface

CAN XL Driver

—1

Note: This image is notcomplete with
respectto all internal communication
paths.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Data Transformation” (1) — Introduction

—
~
n
S
n
e
)
=}
@©
o

The following pages explain communication with Data Transformation:

» How do the software layers interact?

» How do the software interfaces look like?

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Data Transformation” (2) — Example and First Look

N
~
n
S
n

e
[}
=}
@©
o

This example shows the data flow if data transformation is
used for inter-ECU communication.

Application Layer

A SW-C sends data configured to be transmitted to a remote
ECU and subject to data transformation. This data
transformation doesn’t use in-place buffer handling.

Functionality

» The RTE calls the SOME/IP transformer as the first
transformer in the chain and transfers the data from the

SW'C 1 11 1 |
> The SOME/IP transformer executes the transformation and

writes the output (byte array) to a buffer provided by the
RTE.

» Afterwards, the RTE executes the Safety transformer
which is second in the transformer chain. The Safety

transformer’s input is the output of the SOME/IP SOME/P E2E AUTOSAR
transformer. Transformer Transformer COM

» The Safety transformer protects the data and writes the
output into another buffer provided by the RTE. A new
buffer is required because in-place buffer handling is not
used.

» The RTE transfers the final output data as a byte array to
the COM module.

Buffer 1 Buffer 2

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

™
H
n
=
n
e
)
=}
@©
o

Interfaces: Interaction of Layers

Example “Data Transformation” (3) — Closer Look at Interfaces

Architecture Description

The RTE uses the transformerwhich are located in
the System Service Layer.

Interface Description

The transformers in this example have the following
interfaces:

SomeIpXf SOMEIP Signall
(

uint8 *pbufferl,
uintlo *pbufferllength,
<type> data

SafetyXf Safety Signall
(

uint8 *pbuffer?2,
uintlé6 *buffer?2length,
uint8 *pbufferl,
uintlo bufferllLength

SW-C

Rte Write(data)

Buffer 2

£ Xf £ i 11
SomeIpXf SOMEIP Signall S(a etyXf safety Signa
(
bufferl, E;fiirZéL .
&bufferlLength, uffer2Length,
bufferl,
data

) bufferllLength
)

SOME/IP

Transformer E2E Transformer

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Com_SendDynSignal

(
Signall,
buffer2,
buffer2Length

)

AUTOSAR
COM

<
~
n
=
n

e
)
=}
]
o}

Interfaces: Interaction of Layers
Example “Data Transformation” (4) — COM Based Transformation

Goal

The COM Based Transformer provides serialization e
functionality to the transformer chain based on a fixed AppllEEle Ly
communication matrix.

The fixed communication matrix allows an optimized placement
of signals into PDUs (e.g. a booleandata can be configured
to only occupyone bit in the PDU). This enables the usage Transformer Coordination

of transformer chains in low payload networks like Can or
Lin pay Buffer 1 Buffer 2

Functionality

» The COM Based Transformeris the first transformer
(serializer) and gets the data fromthe application via the
RTE.

)) . . . Com Based Other AUTOSAR
» Basedon the COM configuration (communication matrix) Transformer | Transformer COM

the data is serialized exactly in the same way as the COM
module would have done it (endianess, sign extension).

» Other transformers may enhance the payload to have
CRCs and sequence counters (SC).

» The transformer payload is passed to the COM module as L _\
one array of byte via the Com_SendSignalGroupArray API. , . ¥

» The COM module can be configured to perform crcl sc
transmission mode selection based on the communication
matrix definition.

Signal Pdu

p_—

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Signal-Service-Translation (1)

~
=)
=
(]
2]
e
)
=)
]
o

Goal

Adaptive Platform restricts communication to Service-oriented communication, the rest of the vehicle however

still uses Signal-based communication means - therefore a translation of these two approaches has to be
performed in order to allow an interaction between Classic and Adaptive Platform.

Functionality

» The definition and implementation of the Classic platform signal-service-translation shall be done inside an
Application Software Component, the so called Translation Software Component.

» The Translation Software Component has Ports defined and the payload is described using Portinterfaces
m Signal-to-service: Ports forincoming signals and Ports for outgoing events
m Service-to-signal: Ports forincoming events and Ports for outgoing signals

Service Interface S/R Interface
- Events - Data Elements

Adaptive Application

Classic SW-C

Translation

Service oriented communication . . Signal based communication
Application SW-C ’

SOME/IP Serialized Bytes

a b c d

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

o
Q
=
(]
2]
e
)
=)
]
o

Interfaces: Interaction of Layers
Signal-Service-Translation (2)

Functionality

» Forthe signal-based part the full functionality of the Classic platform COM-Stack is available and may be
configured suchthat the signal-based ISignallPdus may originate from a variety of sources (Can, Lin, Flexray)
and the ISignallPdus may be safety and security protected.

» Forthe service-oriented part it has to be guaranteed that the defined SOME/IP Service actually is compatible to
the Adaptive platform. This applies forthe payload part (e.g. the SOME/IP serializer has to be used) as well as
for the control path using BswM and ServiceDiscovery.

» The behavioral part of the Translation Software Componentitself defines how the data from signal-based side is
transported to the service-orientedside, and vice versa.

Translation Application SW-C

SOME/IP
Serializer

E2E Transformer

Signal
Senice
Mapping

BN coM Based
Transformer

. E2E Transformer

COM-Stack

SOME/IP
Header

SOME/IP Serialized Bytes

b

c d

AUTO SAR"

Document ID 53 :
AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

I
o
)
o)
=
e
)
=)
@
o

1. Architecture
1. Overview of Software Layers
2. Content of Software Layers
3. Content of Software Layers in Multi-Core Systems
4. Content of Software Layers in Mixed-Critical Systems
5
6
7

Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers

8. Overview of CP Software Clusters
2. Configuration

3. Integration and Runtime Aspects

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

—
=
~
ke
S
[}
o

Overview of CP Software Clusters
Concept overview

The approach in a nutshell

Application Layer

Application
Software
@

Application
Software
©

Application
Software
c)

AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

Runtime Environment

R

Software Cluster Connection
Binary Manifest

Application Software Cluster

AppHCaliun Layer

Application
Software
Component

Application Layer Application Layer

Application Application AUTOSAR
Software Software

Component Component

eeeeee

Runtime Environment

s b g
Software Cluster Connection
Binary Manifest

AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

AUTOSAR
Interface

Runtime Environment
ks S A

Software Cluster Connection

Runtime Environment

A YIRS

Application Software Clgster

Software Cluster Connection
Binary Manifest Binary Manifest

Application Software Cluster
Application Software Cluster

Application Application

Software Software Binary Manifest
Component Component

UTOSAR UTOSAR Software Cluster Connection

Runtime Environment

Host Software Cluster

Microcontroller

Software Cluster enable to split the
monolithic Classic Platform Architecture
into smaller units

Each CP Software Cluster is separately
buildable

Software Clusters can be independently
updated

Connections between Software Clusters
are created on basis of Binary Objects
and the information hold in the Binary
Manifest

Considers the limitation of current micro
controller architectures, e.g. no address
virtualization

In an Application Software Cluster,
Application SW-Cs and BSW modules
(with limitations) can be integrated

The Host Software Cluster contains the
major part of the BSW Stack, especially
micro controllerdependent modules
including the Operating System.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

N
E
~
Q
(o))
@
o

Overview of

CP Software Clusters

Software Cluster Connection (1)

Application
Software
Component

Application Layer

Application
Software
Component

Application
Software
Component

AUTOSAR
Interface

Cross SwCluC
communication

Application Application
Software Software
Component || Component

AUTOSAR AUTOSAR
Interface Interface

Runtime Environment

AUTOSAR
Interface

AUTOSAR
Interface

Runtime Environment

SwCluC

oS NvM Dem Dcm XXX
High High High High High
Proxy Proxy Proxy Proxy Proxy

Cross SwCluC
communication

Binary Manifest

Binary Manifest

(OS] NvM Dem Dcm XXX
Low Low Low Low Low
Proxy Proxy Proxy Proxy Proxy

Microcontroller

Cross SwCluC
communication

Application Software Cluster

Host Software Cluster

The module Software Cluster Connection
(SwCluC)has 3 parts:

> Cross Software Cluster Communication

(SWCIuUC_ Xcc) provides the featuresiin
Classic Platform

m to enable the connection of software clusters
based on binary manifest

m for cross interaction and communication of
software clusters

Abstraction of non-software cluster-local
BSW modules and their APIs in the
corresponding proxy modules

m High Proxies substitute non-local BSW and
provide the according APIs

m Lower Proxy modules connect to regular
BSW modules of the Host Software Cluster

The Binary Manifest (BManif) provides
binary metainformation for interfaces to be
able to connectsoftware clusters.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Overview of CP Software Clusters
Software Cluster Connection (2)

™
Y—
£
N~
ke
Q
(o))
@
o

» Software Cluster Connection (SwCluC)
enables a flexible handling of interfaces

m Interfaces will be connected in a link
process, based on Binary Manifest and
match of required and provided entries

m Ifa match is found the connectionis
established

m If no requesteris found the interface stays
open <:>

m If no provider is found, the interface stays
open, and default values are provided O

m This enables update of Software Clusters
with interface changes

Application Layer Application Layer
Application Application
Software Software
Component Component

Application Application
Software Software
Component Component

AUTOSAR AUTOSAR
Interface Interface

AUTOSAR AUTOSAR
Interface

Runtime Environment
LR

Software Cluster Connection
Binary Manifest

Runtime Environment

LIRSS,

Software Cluster Connection
Binary Manifest

9]
@
=
O
:
=
5]
1]
<
o
i)

ici
Application Software Cluster

Appl

Application Layer

—_—

4

» Cross Software Cluster Communication
(SwCIuC_Xcc)implements the communication
pattern and the interface to the RTE

m RTE interface: RIPS-Plugin Q

SwCluC
Binary Manifest

Application Software Cluster

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

o
(@)
)
o)
=
e
)
=)
@
o

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces
1. General
2. Interaction of Layers (Examples)

2. Configuration
3. Integration and Runtime Aspects

® oA~ W N

AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre-compile time
m Preprocessor instructions
m Code generation (selection or synthetization)

2. Link time

m Constant data outside the module; the data can be configured after the module has been
compiled

3. Post-build time

m Loadable constant data outside the module. Very similar to [2], but the data is located in a
specific memory segment that allows reloading (e.g. reflashing in ECU production line)

Independent of the configuration class, single or multiple configuration sets can be provided by means
of variation points. In case that multiple configuration sets are provided, the actually used configuration
set is to be chosen at runtime in case the variation points are bound at run-time.

In many cases, the configuration parameters of one module will be of different configuration classes.

Example: a module providing Post-build time configuration parameters will still have some parameters
that are Pre-compile time configurable.

Note: Multiple configuration sets were modeled as a sub class of the Post-build time configuration class
up to AUTOSAR 4.1.x.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Pre-compile time (1)

Use cases
Pre-compile time configuration would be chosen for

» Enabling/disabling optional functionality
This allows to exclude parts of the source code that are not needed
» Optimization of performance and code size
Using #defines results in most cases in more efficient code than
access to constants or even access to constants via pointers.
Generated code avoids code and runtime overhead.

Restrictions
» The module must be available as source code

» The configuration is static and it may consist of one or more
configuration sets identified by means of variation points. To update
any configuration set (e.g. change the value of certain parameters),
the module has to be recompiled. .

. . . . Nm_Cfg.c ! Nm Cfg.h
Required implementation | ; -
Pre-compile time configuration shall be done via the module‘'s two AN T

configuration files (*_Cfg.h, * Cfg.c)and/or by code generation: (optional) nedes

m * Cfg.h stores e.g. macros and/or #defines
m * Cfg.c stores e.g. constants

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Pre-compile time (2)

Example 1: Enabling/disabling functionality
File Spi_Cfg.h:
#define SPI DEV_ERROR DETECT ON

File Spi_Cfg.c:
const uint8 myconstant = 1U;
File Spi.c (available as source code):

#include "Spi Cfg.h" /* for importing the configuration parameters */

extern const uint8 myconstant;

#if (SPI_DEV_ERROR DETECT == ON)
Det ReportError (Spi ModuleId, 0U, 3U, SPI E PARAM LENGTH); /* only one instance available */
#endif

Note: The Memory Abstraction (as specified by AUTOSAR) is not used to keep the example simple.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Pre-compile time (3)

Example 2: Event IDs reported to the Dem
XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NVM E REQ FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint8 Dem EventIdType; /* total number of events = 46 => uint8 sufficient */

#define DemConf DemEventParameter FLS E ERASE FAILED 0 1U
#define DemConf DemEventParameter FLS E ERASE FAILED 1 20
#define DemConf DemEventParameter FLS E WRITE FAILED 0 3U
#define DemConf DemEventParameter FLS E WRITE FAILED 1 4U

Example for a multiple
instance driver (e.g. internal
and external flash module)

#define DemConf DemEventParameter NVM E REQ FAILED 50
#define DemConf DemEventParameter CANSM E BUS OFF oU
File Dem.h:

#include "Dem Cfg.h" /* for providing access to event symbols */

File NvM.c (available as source code):
#include "Dem.h" /* for reporting production errors */

Dem_SetEventStatus(DemConf_DemEventParameter_NVM_E_REQ_FAILED, DEM_EVENT_STATUS_PASSED);

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Link time (1)

Use cases
Link time configuration would be chosen for

» Configuration of modules that are only available as object code
(e.g. IP protection or warranty reasons)

» Creation of configuration after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection
Configuration data shall be captured in external constants. These external constants are
located in a separate file. The module has direct access to these external constants.

2. 2..n configuration sets, runtime selection possible
Configuration data shall be captured within external constant structs. The module gets a
pointer to one of those structs at initialization time. The struct can be selected at each
initialization.

AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Link time (2)

-
o
o
o
o
e
)
=}
@©
o

Example 1: Event IDs reported to the Dem by a multiple instantiated module (Flash Driver) only available as object code
XML configuration file of the Flash Driver:
Specifies that it needs the event symbol FLS E WRITE FAILED forproduction error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uintl6 Dem EventIdType; /* total number of events = 380 => uintl6 required */

#define DemConf DemEventParameter FLS E ERASE FAILED O 10
#define DemConf DemEventParameter FLS E ERASE FAILED 1 20
#define DemConf DemEventParameter FLS E WRITE FAILED O 3U
#define DemConf DemEventParameter FLS E WRITE FAILED 1 4U
#define DemConf DemEventParameter NVM E REQ FAILED 50
#define DemConf DemEventParameter CANSM E BUS OFF 6U

File FIs_Lcfg.c:
#include "Dem Cfg.h" /* for providing access to event symbols */

const Dem EventIdType Fls WriteFailed[2] = {DemConf DemEventParameter FLS E WRITE FAILED 1,
DemConf DemEventParameter FLS E WRITE FAILED 2};

File Fls.c (available as object code):
#include "Dem.h" /* for reporting production errors */
extern const Dem EventIdType Fls WriteFailed[];

Dem SetEventStatus (Fls WriteFailed[instance], DEM EVENT STATUS FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Link time (3)

Example 2: Event IDs reported to the Dem by a module (Flash Driver) that is available as object code only

Problem
Dem EventIdType IS also generated depending of the total number of event IDs on this ECU. In this example it is represented

asuint16.The Flash Driver uses this type, but is only available as object code.

Solution
In the contract phase of the ECU development, a bunch of variable types (including Dem EventIdType)have to be fixed and

distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code
using the correct types.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Post-build time (1)

Use cases
Post-build time configuration would be chosen for
» Configuration of data where only the structure is defined but the contents not known during ECU-build time
» Configuration of data that is likely to change or has to be adapted after ECU-build time
(e.g. end of line, during test & calibration)

» Reusability of ECUs across different car versions (same application, different configuration), e.g. ECU in a low-cost car
version may transmit less signals on the bus than the same ECU in a luxury car version.

Restrictions

» Implementation requires storing all possibly relevant configuration items in a flashable area and requires pointer dereferencing
upon config access. Implementation precludes generation of code, which has impact on performance, code and data size.

Required implementation

1. One configuration set, no runtime selection
Configuration data shall be captured in external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded. The module gets a pointer to a base struct at initialization time.

2. 2..n configuration sets, runtime selection possible
Configuration data shall be captured within external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded. The module gets a pointer to one of several base structs at initialization time. The
struct can be selected at each initialization.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Post-build time (2)

S
o
o
>
o
[
[oy)
©
o

Example 1

If the configuration data is fix in memory size and position, the module has direct access to these external structs.

PduR. c — Compiler — Linker — PduR. o
4 Direct access
_ _ (via reference as given by
Linker control file the pointer parameter of
v PduR’s initialization function)
PduR PBcfg.c|—* Compiler > Linker ——»|PduR PBcfg.o

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Post-build time (3)

X
o
=)
o
>
o
()
=)
]
o

Required implementation 2: Configuration of CAN Driver that is available as object code only; a configuration set can be
selected out of multiple configuration sets during initialization time.

File Can_PBcfg.c:
#include “Can.h” /* for getting Can ConfigType */
const Can ConfigType MySimpleCanConfig [2] =
{
{
Can BitTiming 0xDF,
Can AcceptanceMaskl = OxFFFFFFFF,
Can_ AcceptanceMask2 = OxFFFFFFFF,

/

Can AcceptanceMask3 = 0x00034DFF, Cknaner
Can_ AcceptanceMask4 = 0x00FF0000
b
{ - }
i
File EcuM.c:
#include “Can.h" /* for initializing the CAN Driver */ e
Can Init (&MySimpleCanConfig[0]); Linker

File Can.c (available as object code):
#include “Can.h"“ /* for getting Can ConfigType */

void Can Init (Can ConfigType* Config)
{ . .

/* write the init data to the CAN HW */ Binary file
i

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Variants

Differentuse cases require differentkinds of configurability. Therefore the following configuration variants are
provided:
> VARIANT-PRE-COMPILE
Only parameters with "Pre-compile time" configuration are allowed in this variant.

> VARIANT-LINK-TIME
Only parameters with "Pre-compile time" and "Link time" are allowed in this variant.

» VARIANT-POST-BUILD
Parameters with "Pre-compile time", "Link time" and "Post-build time" are allowed in this variant.

Exampleusecases:
> Reprogrammable PDUrouting tables in gateway (Post-build time configurable PDU Router required)

> Stati_calclis configured PDU routing with no overhead (Pre-compile time configuration of PDU Router
require

To allow the implementation of such differentuse cases in each BSW module, up to 3 variants can be
specified:
> A variant is a dedicated assignment of the configuration parameters of a module to configuration
classes
» Within a variant a configuration parameter can be assigned to only ONE configuration class

» Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-
Compile fordevelopmenterror detection and post-build for reprogrammable PDU routing tables

> Itis possible and intended that specific configuration parameters are assigned to the same
configuration class for all variants (e.g. developmenterror detectionis in general Pre-compile time
configurable).

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Memory Layout Example: Post-build configuration

EcuM defines the index: Descriptionwhere to find what is an overall agreement:

1. EcuM needsto know all addresses including index
0x8000 &index (=0x8000))

2. The modules (xx, vy, =zz)needto know their own
0x8000 fxx_configuration = 0x4710 start address:in this case: 0x4710, 0x4720 ...
DxB00° fyy_confrguration 7 Oxf7e0 3. The start addresses might be dynamic i.e. changes
0x8004 &zz configuration = 0x4730 Wlth new Configuration

4. Wheninitializing a module (e.g. xx, vy, zz), ECuM

passes the base address of the configurationdata (e.g.
Xx defines the modules configuration data: 0x4710, 0x4720, 0x4730) tothe module to allow for
0x4710 sthe real xx configuration variable sizes of the configuration data.
0x4710 lower = 2
0x4712 upper =7 The module data is agreed locally (in the module) only
0x4714 more_data 1. The module (xx, yy) knows its own start address
(to enable the implementerto allocate data section)

2. Only the module (xx, yy) knows the internals of

Yy defines the modules configuration data: . .)
its own configuration

0x4720 &the real yy configuration
0x4720 Xx_datal=0815 o entat'\O“" in
0x4722 Yy data2=4711 «p St—bu\\d ‘_mp \es pdf’
. geeChapte tationRUIES:
0x4724 more data deta\\s’ se C\mp\e
v
AUTOSAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Configuration
Memory Layout Example: Multiple configuration sets

0x8000 &index[] (=0x8000) As before, the descriptionwhere to find what is an
e | 0x8000 sxx_configuration = 0x4710 overall agreement
0x8002 &yy configuration = 0x4720 1. The inglex contains more than one description (FL,
, , FR,..) in an array
0x8004 &zz configuration = 0x4730 . .
— (here the size of an array elementis agreed to be
8)
R 0x8008 &xx_configuration = 0x5000 2. There is an agreed variable containing the position
0x800a &yy configuration = 0x5400 of one descrlptlon _ _ _
0x800c szz_configuration = 0x5200 selector= Chec_kPmCompmaﬂoln() _
3. Instead of passing the pointer directly there is one
indirection:
0x8010 &xx_configuration = .. (struct EcuM_ConfigType *) &index[selector];
RL 0x8012 &yy configuration = .. 4. Everything else works as in conventional single
0x8014 &zz configuration = .. conflguratlon case.
“PO - U\\d \mp p f"
Chapter tionRules-
tails, S€€ \ t
Fordeta’™ °* g TR_CIMP
“AUT —
AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

Mapping of Runnables

© © N o o &M W DN

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic
Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Mapping of Runnables

P

Q
Q

—

L

e
)
=}
]
o

» Runnables are the 1 0. *
active parts of %. '|<'| [SW-C J < { Runnable J
Software Components | =
> They can be executed 0..* | 0..*
concurrently, by 1l —
- 3
mapping them to g=]
different Tasks. [Task J CBD
» The figure shows 2
further entities like OS- 0..” S
applications, Partitions, 1 1 g-
UC-Cores and BSW- M . . %
Resources which have U) . O
0 be considered for [Partition J* *[OS-Application J &
this mapping. 1 0..* c%'
=
0..* 1
BSW-Ressource
[(E.g., NV-block) J [uC-Core J

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

Mapping of Runnables
Partitioning

© © N o o &M W DN

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic
Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Introduction

» Partitioning is implemented by using OS-Applications within the OS

» OS-Applications are used as error containment regions:
m Permit logical grouping of SW-Cs and resources
m Recovery policies defined individually for each OS-Application

» OS-Application consistency is ensured by the system/platform, for instance for:
m Memory access violation
m Time budget violation

» OS-Applications can be terminated or restarted during run-time as a result of a detected error:
m Further actions required: see example on following slides
m All BSW modules are placed in privileged OS-Applications
m These OS-Applications should not be restarted or terminated

» OS-Applications are configured in the ECU configuration:
m SW-Cs are mapped to OS-Applications (Consequence: restricts runnable to task
mapping)
m An OS-Application can be configured as restartable or not

» Communication across OS-Application boundaries is realized by the 10C

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Example of restarting OS-Application

\ A violation (error) has occurred inthe system (e.g., memory or
timing violation)

Decision (by integrator code) to restart the OS-Application

— Other OS-Applications remain unaffected

% The OS-Application is terminated by the OS, cleanup possible

‘ﬂ\m}’ Communication to the OS-Applicationis stopped
=

[] Communication from the OS-Application is stopped (e.g., default
values for ports used)

ment for OS-Application setup (init runnables, port values etc)

‘ 30 30
K """ @ i — i — The OS-Application is restarting (integrator code), initial environ-

=)
w Communication to the OS-Applicationis stopped
=
L]

Communication from the OS-Application is stopped

~ The OS-Application is restarted and up and running

Communication is restored

OS-Application internally handles state consistency

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Involved components

» Protection Hook
m Executed on protectionviolation (memory or timing)
m Decideswhat the action is (Terminate, Restart, Shutdown, Nothing)
m Provided by integrator
m OS acts on decisionby inspecting return value
» OsRestartTask
m Started by OS in case Protection Hook returns Restart
m Provided by integrator
m Runs in the OS-Application’s contextand initiates necessary cleanup and restart activities, such as:
» Stopping communication (ComM)
= Updating NvM
» Informing Watchdog, CDDs etc.
> RTE
m Functions for performing cleanup and restart of RTE in OS-Application
m Triggers init runnables for restarted OS-Application
m Handles communication consistency for restarting/terminated OS-Applications
» Operating System
m OS-Applications have states (APPLICATION ACCESSIBLE, APPLICATION RESTART,
APPLICATION TERMINATED)

m OS provides API to terminate other OS-Applications (for other errors than memory/timing)

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Restart example

sd TerminateRestartPartition

Os-Application
state for the
considered
Partition.

CAPPLICATION_ACTIVE)

os ProtectionHook OSRestartTask RTE BSW modules

I inform the RTE i
S e = s
<< : i i i
QPPUCAHON_RESTARﬂ@ ActivateTask ; ; ;
; > ; ;
: Trigger cleanup in the BSW partition '
! S FToooeeoooooooooooes P
. Polling end of asynchronous cleanups .
' T I N T N T T T T T T T o]
: request a restart of the partition to the RTE
! . g
AllowAccess
¢ y
CAPPLICATION_ACTIVE) !
TerrlninateTask
<]

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Other examples

» Termination
m An OS-Application can be terminated directly
m Also for termination, some cleanup may be needed, and this shall be performed in the
same way as when restarting an OS-Application

» Error detection in applications
m SW-Cs may require restart for other reasons than memory or timing violation
m A termination/restart can be triggered from a SW-C using the OS service
TerminateApplication()
m Example: a distributed application requires restart on multiple ECUs

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

Mapping of Runnables
Partitioning
Scheduling

© © N o o &M W DN

Mode Management

Error Handling, Reporting and Diagnostic
Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
General Architectural Aspects

> Basic Software Scheduler and the RTE are generated together.
» This enables
m that the same OS Task schedules BSW Main Functions and Runnable Entities of

Software Components
= to optimize the resource consumption
= to configure interlaced execution sequences of Runnable Entities and BSW Main functions.

m a coordinated switching of a Mode affecting BSW Modules and Application Software
Components

m the synchronized triggering of both, Runnable Entities and BSW Main Functions by the
same External Trigger Occurred Event.

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Basic Scheduling Concepts of the BSW

BSW Scheduling shall
» Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

Data consistency mechanisms

> Aprpl)ligd Io_Iata consistency mechanisms shall be configured by the ECU/BSW integrator dependent from the configured
scheduling.

Single BSW modules do not know about

» ECU wide timing dependencies

» Scheduling implications

» Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler configured by the ECU/BSW integrator and generated by the RTE
generator together with the RTE

» Eases the integration task
» Enables applying different scheduling strategies to schedulable objects
m Preemptive, non-preemptive, ...
» Enables applying different data consistency mechanisms
» Enables reducing resources (e.g., minimize the number of tasks)
» Enables interlaced execution sequences of Runnable Entities and BSW Main functions

Restrict the usage of OS functionality

» Only the BSW Scheduler and the RTE shall use OS objects or OS services
(exceptions: EcuM, Complex Drivers and services: GetCounterValue and GetElapsedCounterValue of OS; MCAL

modules may enable/disable interrupts)
» Rationale:
m Scheduling of the BSW shall be transparent to the system (integrator)
m Enables reducing the usage of OS resources (Tasks, Resources,...)
m Enables re-using modules in different environments

AUTO SAR"

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Scheduling Objects, Triggers and Mode Disabling Dependencies

BSW Scheduling objects
» Main functions

m n permodule

m locatedin all layers

Zzz MainFunction Aaa

BSW Events

BswTimingEvent
BswBackgroundEvent
BswModeSwitchEvent
BswModeSwitchedAckEvent
BswInternalTriggerOccuredEvent

Yyy MainFunction Aaa

‘

Xxx Isr Yyy

Microcontroller

BswExternalTriggerOccuredEvent

YV V V VYV VY
L

BswOperationInvokedEvent

Triggers

» Main functions can be triggered in all layers by
the listed BSW Events

Mode Disabling Dependencies

» The scheduling of Main functions can be
disabled in particular modes.

AUT@SARW Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Transformation Process

> Ideal concurrency » Restricted concurrency
> Unrestricted resources > Restricted resources
> Only real data dependencies > Real data dependencies

» Dependencies given by restrictions
» Scheduling objects » OS objects
> Trigger m Tasks

m BSW Events m ISRs

» Sequences of scheduling objects m Alarms
» Scheduling Conditions m Resources
> m OS services

» Sequences of scheduling objects within tasks

» Sequences of tasks

>

>
>
>
>
>

AUTOEOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Transformation Process — Example 1

Logical Architecture (Model) Technical Architecture (Schedule Module)

Taskl {

Zzz MainFunction Bbb () ;

Zzz MainFunction Bbb () ; Yyy MainFunction Aaal();

PR zmscsunction a0, _ e |

Xxx_MainFunction Aaa(); Xxx MainFunction Aaa();

——
.
.
.

Nansiormeation

Mapping of scheduling objects to OS Tasks

Specification of sequences of scheduling objects within tasks

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Transformation Process — Example 2

Logical Architecture (Model) Technical Architecture (Schedule Module)

Task?2 {

Xxx MainFunction Bbb () ;

Xxx MainFunction Bbb () ; }

Yyy MainFunction Bbb () ; Task3 {

76

Yyy MainFunction Bbb () ;

Nansiormeation

Mapping of scheduling objects to OS Tasks

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Data Consistency — Motivation

» Accessto resources by differentand concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of differenttask contexts)

Xxx Module

Xxx MainFunction () ;

Yyy AccesgResource() ;
|

<>

Yyy MainFunction(); '

s

Yyy Module

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

Implementation of Schedule Module

Technical Architecture (Schedule Module) rEREIES SO Enter_smech_aeme>

DisableAllInterrupts
#define SchM Exit <mod> <name> \

Taskl XXX_MOdule EnableAllInterrupts

M

Yyy Acces

Logical Architecture (Model)/

Yyy MainFunction() {

SchM Enter Yyy XYZ();
/7\\ :) <access to shared resource>
\y Yyy MainFunction() ;

SchM Exit Yyy XYZ();

Task?2)
N@RSIormetion
Data consistency is ensured by:
Interrupt blocking
AUTEO© SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

Implementation of Schedule Module

Technical Architecture (Schedule Module) FERELAG SR Brier_Suoes_gnames

/* nothing required */
#define SchM Exit <mod> <name> \

Taskl Xxx Module /* nothing required */

M

Yyy Acces

Logical Architecture (Model)/

Yyy MainFunction() {

SchM Enter Yyy XYZ();
/7\\ :) <access to shared resource>
\y Yyy MainFunction() ;

SchM Exit Yyy XYZ();

Task?2)
N@RSIormetion
Data consistency is ensured by:
Sequence
AUTO©SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Mode Communication / Mode Dependent Scheduling

» The mode dependent scheduling of BSW Modules is identical to the mode dependent
scheduling of runnables of software components.

» A mode manager defines a Provide ModeDeclarationGroupPrototype in its Basic
Software Module Description, and the BSW Scheduler provides an API to communicate mode
switch requests to the BSW Scheduler

» A mode user defines a Required ModeDeclarationGroupPrototype inits Basic Software

Module Description. On demand the BSW Scheduler provides an API to read the current
active mode

> |If the Basic Software Module Description defines Mode Disabling Dependencies, the BSW
Scheduler suppresses the scheduling of BSW Main functions in particular modes.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

Mapping of Runnables
Partitioning
Scheduling

Mode Management

© © N o o &M W DN

Error Handling, Reporting and Diagnostic
Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects

Vehicle and application mode management (1)

Relation of Modes:

» Every system contains Modes at
different levels of granularity. As shown
in the figure, there are vehicle modes
and several applications with modes and
ECUs with local BSW modes.

> Modes at all this levels influence each
other.

Therefore;

.
Vehicle ’
Modes A A

Influence each other
Application
Modes A
v Infl h oth
Influence each other S IEE CEEN CurEf
BSW
Modes
v v

» Depending on vehicle modes, applications may be active or inactive and thus be in different

application modes.

» Vice versa, the operational state of certain applications may cause vehicle mode changes.

» Depending on vehicle and application modes, the BSW modes may change, e.g. the
communication needs of an application may cause a change in the BSW mode of a

communication network.

> Vice versa, BSW modes may influence the modes of applications and even the whole
vehicle, e.g. when a communication network is unavailable, applications that depend on it

may change into a limp-home mode.

AUTOSAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects

Vehicle and application mode management (2)

Processing of Mode Requests

The basic idea of vehicle mode management is to distribute and arbitrate mode requests and to

control the BSW locally based on the results.

This implies that in each OS-Application, there has to be a mode manager that switches the modes
for its local mode users and controls the BSW. Of course there can also be multiple mode

managers that switch different Modes.
The mode request is a “normal” sender/receiver communication (system wide) while the mode

switch always a local service.

AUTOSAR"

Mode
Requester

[

Mode
Request

-

Mode [

Manager |}

Mode [

Manager
I}—

Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Mode
Switch

Mode
Switch

Mode []
D User

Mode []
|] User

Integration and Runtime Aspects Application Layer
Vehicle and application mode management (3)

System Services

Layer Functionality per module

App Mode Arbitration SW-C

Microcontroller (uC)

RTE Mode Request Distribution+ Mode Handling _ _ o
» The major part of the needed functionality is

BswM placed in the Basic Software Mode Manager
(BswM for short). Since the BswM is located
BSW Mode Arbitration Mode Control N th_e B.SW’ 'tis present in every OS-
Application and local to the mode users as
well as the controlled BSW modules.

» The distribution of mode requests is performed by the RTE and the RTE also implements
the handling of mode switches.

» E.qg. for vehicle modes, a mode request originates from one central mode requestor SW-C
and has to be received by the BswMs in many ECUs. This is an exception of the rule that
SW-Cs may only communicate to local BSW.

» BswMs running in different OS-Applications can propagate mode requests by Sender-
Receiver communication (SchMWrite, SchMRead).

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Vehicle and application mode management (4)

_ Applications
Mode Processing Cycle) - .
> The mode requester SW-C requests mode MOdeSf\?\?‘éeSt'”g Moge U(S:'”g
A through its sender port. The RTE) W-
distributes the request and the BswM 3- switch
receives it through its receiver port. 1: request mode A’

» The BswM evaluates its rules and if a e/

rule triggers, it executes the corresponding RTE
action list.

» When executing the action list, the BswM Mode request Local mode
may issue a (configurable optional) RTE distribution handling
call to the mode switch API as a last action
to inform the mode users about the

arbitration result, e.g. the resulting mode A. ' BswM |
> Any SW-C, especially the mode Mode | Mode
requester can register to receive the | 2: €xecuteé | Arpitration | Control
mode switch indication. associated S (— Action list
» The mode requests can originate from action ist VIS e ety i Action 1
local and remote ECUs or OS-Applications. : ! ,
overrides the : Action 2
> Note that the mode requestor can only request for mode |
receive the mode switch indications from Awith mode A |
the local BswM, even if the requests are B 90 | RteSwitch (mode A”)
sent out to multiple OS-Applications. |

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

[50)
o
)
o)
=
e
()
=)
@
o

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

© © N o o &M W DN

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification (1)

Types of errors

Hardware errors / failures
m Root cause: Damage, failure or ,value out of range’, detected by software
m Example 1: EEPROM cell is not writable any more
m Example 2: Output voltage of sensor out of specified range

Software errors
m Root cause: Wrong software or system design, because software itself can never fail.

m Example 1: wrong API parameter (EEPROM target address out of range)
m Example 2: Using not initialized data

System errors
m Example 1: CAN receive buffer overflow
m Example 2: time-out for receive messages

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

o
(o2}
c

jo!
o
>
©
a

Integration and Runtime Aspects - Error Handling, Reporting and Diagnhostic
Error Classification (2)

Error Classes

» DevelopmentErrors

Developmenterrors are software errors. They shall be detected like assertions and fixed during
developmentphase. The detection of errors that shall only occur during development can be switched off
per module for production code (by static configuration namely preprocessor switches). The according API

Is specified within AUTOSAR, but the functionality can be chosen/implemented by the developeraccording
to specific needs.

> Runtime Errors

Runtime errors are systematic software errors. They indicate severe exceptions that hinder correct

execution of the code. The monitors may stay in code even for a deployed systems. Synchronous handling
of these errors can be done optionally in integrator code.

> Transient Faults

Transient faults occur in hardware e. g. by passage of particles or thermal noise. Synchronous handling of
these faults can be done optionally in integrator code. The detecting module may offer behavioral
alternatives selectable by this integrator code.

> Production Errors / Extended Production Errors

Those errors are stored in fault memory for repair actions in garages. Their occurrence can be anticipated
and cannot be avoided in production code. Production errors have a detectionand a healing condition.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Alternatives

[<}]
S
N
~
o
il
6]
(o))
©
o

Thereareseveral alternatives to reportan error (detailed onthefollowing slides):

Via API
Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)
Inform the caller about failure of an operation

Via central Error Hooks (Default Error Tracer, Det)
For logging and tracing errors during product development. Can be switched off for production code.

Via central Callouts (Default Error Tracer, Det)
For handling errors during productlife time.

Via central Error Function (AUTOSARDiagnostic Event Manager)
For error reaction and logging in series (productioncode)

Each application softwarecomponent (SW-C) canreporterrorsto Diagnostic Event Manager (Dem).

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnhostic
Mechanism in relation to AUTOSAR layers and system life time

N~
N
(o)
Q
-
K]
Q
()]
@
o

Default
Error Tracer
(Det)
Diagnostic
Log End to End
and Trace Communication
(Dlf) (E2E)
Basic Software
Diagnostic Event
Manger (Dem)
and Function
Inhibition
Manager (FiM)
Watchdog ECU Hardware
(Wdog)
Life cycle: development production After production
AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting via API

Error reporting via API
Informs the caller about failure of an operation by returning an error status.

Basic return type
Success: E OK (value: 0)

Failure: E NOT OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be
defined. Different errors shall only be used if the caller can really handle these. Specific
development errors shall not be returned via the API. They can be reported to the Default
Error Tracer (Det).

Example: services of EEPROM driver

Success: EEP_E OK

General error (service not accepted): EEP E NOT OK

Write Operation to EEPROM was not successful: EEP E WRITE FAILED

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

—
N

=
o
[
=}
©
=%

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Introduction

Errorreporting viaDiagnostic Event Manager (Dem)

For reporting production/ series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:
» Writing to error memory

» Disabling of ECU functions (e.g. via Function Inhibition Manager)

» Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in productioncode
and whose functionality is specified within AUTOSAR.

Errorreporting viaDefaultError Tracer (Det)
For reporting development/runtime errors.

The Default Error Tracer is mainly intended for handling errors during developmenttime but also for handling
systematic errors in production code. Within the Deftault Error Tracer many mechanisms are possible, e.g.:

» Counterrors

» Write error information to ring bufferin RAM

» Send error information via serial interface to external logger
» Infinite Loop, Breakpoint

The detectionand reporting of developmenterrors to the Default Error Tracer can be statically switched on/off
per module (preprocessor switch or different object code builds of the module) but not for Runtime errors.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

=,
<
(2]
S
S
w
S
@
o

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Event Manager — Diagnostic Error Reporting

API

The Diagnostic Event Manager has the following API:
Dem SetEventStatus (EventId, EventStatus)

Problem: the error IDs passed with this API have to be ECU wide defined, have to be statically defined and have to occupy a

compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing
ROM arrays.

Error numbering concept: XML based error number generation
Properties:

Process:
[]
|

Source and object code compatible
Single name space for all production relevant errors
Tool support required

Consecutive error numbers > Error manager can easily access ROM arrays where handling and reaction of errors is
defined

Each BSW Module declares all production code relevant error variables it needs as “extern”
Each BSW Module stores all error variables that it needs inthe ECU configuration description (e.g. CANSM E BUS OFF)

The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a single
file with global constant variables that are expected by the SW modules (e.g.

const Dem EventIdType DemConf DemEventParameter CANSM E BUS OFF=7U; or

#define DemConf DemEventParameter CANSM E BUS OFF ((Dem_EventIdType)7))

The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

N
N~
[}
X
g
()
()]
@
o

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Default Error Tracer — Example: Development Error Reporting

API

The Default Error Tracer has the following API for reporting development errors (runtime errors and transient faults use identical
APIs with different names):

Det ReportError (uintl6 ModuleId, uint8 Instanceld, uint8 ApiId, uint8 ErrorId)

Error numbering concept
ModuleId (uintlo)

The Module ID contains the AUTOSAR module ID from the Basic Software Module List.
As the ran?e is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW
uses only the range from 0..255.
InstanceId (uint8)
The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance
module it shall pass 0 as an instance ID.
ApiId (uint8)

The APKIDs are specified within the software specifications of the BSW modules. They can be #defines or constants
defined inthe module starting with 0.

ErrorId (uint8)

The Error IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the
module‘s header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module
software specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (1)

The module Diagnostic Log and Trace (DIt) collects log messages and converts them into a
standardized format. The DIt module forwards the data to the PduR, which sends it to the

configured communications bus.
Therefore the DIt provides the following functionalities:
» Logging
m logging of errors, warnings and info messages from AUTOSAR SW-Cs, providing a

standardized AUTOSAR interface,
m gathering all log and trace messages from all AUTOSAR SW-Cs in a centralized

AUTOSAR service component (DIt) in the BSW,
m logging of messages from Det and
m logging of messages from Dem.
» Tracing
m of RTE activities

» Control
m individual log and trace messages can be enabled/disabled and

m Log levels can be controlled individually by back channel.
» Generic
m DIt is available during development and production phase,
m access over standard diagnosis or platform specific test interface is possible and
m security mechanisms to prevent misuse in production phase are provided.

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Diagnostic Log and Trace (2)

The DIt communication module is

enabled by an external client.

(1) A SW-C is generating a log
message. The log message is sent
to DIt by calling the Interface
provided by DIt

(2) DIt implements the DIt protocol

(3) DIt sends the encoded log message
to the communication bus

(4) An external DIt client collects the log
message and provides it for later
analysis

AUTO SAR"

Application Layer

CAN/ Flexray /
Ethernet / Serial

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (3)

N
N~
&
x
°
Q
()]
@
o

API

The Diagnostic Log and Trace has syntactically the following API:

D1t SendLogMessage (D1t SessionIDType session_id,
*log_data,
uintl6 log _data_ length)

D1t MessageLogInfoType log_info, uint3

Log message identification :
session id

Session ID is the identification number of a log or trace session. A session is the logical entity of the source of log or
trace messages. If a SW-C is instantiated several times or opens several ports to DIt, a new session with a new Session

ID folr every instance is used. A SW-C additionally can have several log or trace sessions if it has several ports opened
to Dlt.

log infocontains:
Application ID / Context ID

ApPIication ID is a short name of the SW-C. It identifies the SW-C in the log and trace message. Context ID is a user
defined ID to group log and trace messages produced by a SW-C to distinguish functionality. Each ApplicationID can

ohwn several Context IDs. Context ID’s are grouped by Application ID’s. Both are composed by four 8 bit ASCII
characters.

Message ID

Messaged ID is the ID to characterize the information, which is transported by the message itself. It can be used for

identifying the source (in source code) of a message and shall be used for characterizing the payload of a message. A
message ID is statically fixed at development or configuration time.

log data

Contain the log or trace data it self. The content and the structure of this provided buffer is specified by the DIt
transmission protocol.

Description File

Normally the 1og data contains only contents of not fixed variables or information (e.g. no static strings are transmitted).
Additionally a description file shall be provided. Within this file the same information for a log messages associated with the

Message ID are posted. These are information how to interpret the 1og data buffer and what fixed entries belonging to a log
message.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic
Measurement and Calibration

© © N o o &M W DN

Functional Safety
Security
Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Measurement and Calibration

XCP

XCP is an ASAM standard for calibration purpose of an ECU.

XCP within AUTOSAR provides
the following basic features:

A\

Synchronous data acquisition
Synchronous data stimulation

Online memory calibration (read / write
access)

» Calibration data page initialization and
switching

» Flash Programming for ECU
development purposes

Y VY

Diagnostic
AUTOSAR Communi-
COM cation
Manager

Diagnostic
Log and
Trace

XCP Protocol

XCPonFr /
XCPonCAN/ PDU Router
XCPonTCP/IP/ m

Interfaces

AUTOSAR Tp

Bus Interface(s)
(or Socket Adaptor on ethernet)
Bus Driver(s)

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic
Measurement and Calibration
Functional Safety

© © N o o &M W DN

Security
Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Safety End to End (E2E) Communication Protection
Wrapper Approach — Overview

Typical sources of interferences,
causing errors detected by E2E

Libraries OS-Application 2 OS-Application 1 protection:

Receiver 1 Sender

SW-related sources:

S1. Error in mostly generated RTE,
S2. Error in partially generated and
partially hand-coded COM

S3. Error in netw ork stack

S4. Error in generated IOC or OS

Direct function call Il S1
HW-related sources:

RTE H1. Failure of HW netw ork

H2. Netw ork electromagnetic
interference

H3. Microcontroller failure during
context switch or on the
communication betw een cores

Direct function call

Receiver
2

\ Microcontroller 2

Microcontroller 1/ECU 1 /ECU 2

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Safety End to End (E2E) Communication Protection
Wrapper Approach — Logic

Libraries OS-Application 2

OS-Application 1

Receiver 1

8. Call E2E check on array
- E2E_POxCheck()

v

3. Call E2E protecton array — E2E_POx_Protect()

4. Invoke RTE -RTE Write <p> <o>() to

7. Invoke RTE read - RTE Read <p> <o>() toget)
e P, - - ransmit the data element

AUTOSAR Runtim e Environment (RTE)

5. RTE communication (intra or inter ECU), either through COM, IOC,
or local in RTE

Notes:

> For each RTE Write or Read function that transmits safety-related data (like Rte Write <p> <o>()),there is the
corresponding E2E protection wrapper function.

The wrapper function invokes AUTOSAR EZ2E Library.
The wrapper function is a part of Software Component and is preferably generated.
The wrapper function has the same signature as the corresponding RTE function, just instead of Rte there iS E2EPW .

The E2EPW_ function is called by Application logic of SW-Cs, and the wrapper does the protection/checks and calls
internally the RTE function.

For inter-ECU communication, the data elements sent through E2E Protection wrapper are be byte arrays. The byte
arrays are put without any alterations in COM I-PDUs.

YV V V V

A\

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Safety End to End (E2E) Communication Protection
Wrapper Approach — Caveat

NOTE:

» The E2E wrapper approach involves technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E transformer approach (which is fully
standardized by AUTOSAR). Hence, new projects (without legacy constraints due to carry-
over parts) shall use the fully standardized E2E transformer approach.

AUT@SAR Document ID 53:
AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

[50)
o
)
o)
=
e
()
=)
@
o

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

© © N o o &M W DN

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Secure Onboard Communication
Overview - Message Authentication and Freshness Verification

Application Layer Application Layer

4

MAC verification

Lastrcv
counter

Monotonic

counter .
Monotonic

counter
sync

Authentic Authentic T %) Authentic T % > Authentic
I-PDU > I-PDU <) I-PDU <) I-PDU

Secured I-PDU Secured I-PDU

MAC: Message Authentication Code
FV: Freshness Counter Value

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Secure Onboard Communication
Integration as communication service

SecOC BSW:

» adds/verifies authentication information
(for/from lower layer)

» realizes interface of upper and lower
layer modules

» Is addressed by PduR routing
configuration

» maintains buffers to store and modify
secured I-PDUs

Upper Layer SWModule (e.g. COM)

B e
A
< SecOC
Frif ‘ Canlf ‘ o T’ (csc‘?ﬁ]”éi?.'éiﬁiﬁi
Secured I-PDU

————— L ! q 8
Authentic -PDU Authentication
Information

Low er Layer Communication Modules
(e.g.Canlf, CanTp)

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Secure Onboard Communication

Key & Counter Management SW-C

Integration with other services

PDU-Routing

Cryptographic
Senices

b

Key & Counter
Management
Senvices

===J» Key Management
(optional)

= Error Reporting

Frif ‘ Canlf ‘

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — MACsec Key Agreement
Integration with other services

RTE

CRLER=E

State
Manager

Socket Adaptor

TCP/IP Communication Services

Data Path
Ethernet Interface

Ethernet Switch Driver

Key & Counter
Management
Senices

Ethernet Transceiver Driver

MACsec Key Agreement:

» Configures the MACsec entities to enable MACsec protected traffic
» Generates and processes MKPDUs

» Uses Crypto Services to generate and validate ICVs of MKPDUs

—>
=) Senices
—>

—>

Error Reporting

AUTESSAR Document ID 53 :
AUTOSAR_EXP_LayeredSoftwareArchitecture

Table of contents

[50)
o
)
o)
=
e
()
=)
@
o

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management
10. Global Time Synchronization

© © N o o &M W DN

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Energy Management
Introduction

The goal of efficient energy management in AUTOSAR is to provide mechanisms for power
saving, especially while bus communication is active (e.g. charging or clamp 15 active).

AUTOSAR R3.2 and R4.0.3 support only Partial Networking.

Partial Networking

» Allows for turning off network communication across multiple ECUs in case their provided

functions are not required under certain conditions. Other ECUs can continue to
communicate on the same bus channel.

» Uses NM messages to communicate the request/release information of a partial network
cluster between the participating ECUSs.

ECU Degradation
» Allows to switch of peripherals.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

ECUA —
ECUB

2
ECUC

2

Physical CAN Bus ————
Partial Network Cluster 1 =—

Partial Network Cluster 2

AUTO SAR"

Energy Management — Partial Networking
Example scenario of a partial network going to sleep

Initial situation:

» ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.
ECUs “B”, “C” and “D” are members of PNC 2.

All functions of the ECUs are organized either in PNC 1 or PNC 2.
Both PNCs are active.
PNC 2 is only requested by ECU “C”.

The function requiring PNC 2 on ECU “C” is terminated, therefore
ECU “C” can release PNC 2.

This is what happens:
» ECU “C” stops requesting PNC 2 to be active.

» ECUs “C” and “D” are no longer participating in any PNC and can
be shutdown.

» ECU “B” ceases transmission and reception of all signals
associated with PNC 2.

» ECU “B” still participates in PNC 1. That means it remains awake
and continues to transmit and receive all signals associated with
PNC 1.

> ECU “A” is not affected at all.

YV V V VY

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Energy Management — Partial Networking
Conceptual terms

» A significant part of energy management is about mode handling. For the terms
m Vehicle Mode,

m Application Mode and
m Basic Software Mode
see chapter 3.4 of this document.

» Virtual Function Cluster (VFC): groups the communication on port level between SW-
components that are required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

» VFC-Controller: Special SW-component that decides if the functions of a VFC are required at
a given time and requests or releases communication accordingly.

> Partial Network Cluster (PNC): is a group of system signals necessary to support one or
more vehicle functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

AUT@SAR Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

pun

(2]
Q
Q
[

e
)
=}
@©
o

Energy Management — Partial Networking
Restrictions

>
>

Partial Networking (PN) is currently supported on CAN and FlexRay buses.

LIN and CAN slave buses (i.e. CAN buses without network management) can be activated* using
PN but no wake-up or communication of NM messages (including a PNC bit vector) are supported
on those buses

To wake-up a PN ECU, a special transceiver HW is required as specified in ISO 11898-5.

m The standard wake-up without special transceiver HW known from previous AUTOSAR
releases is still supported.

A VFC can be mapped to any number of PNCs (including zero)

m The concept of PN considers a VFC with only ECU-internal communication by mapping it to the
internal channel type in ComM as there is no bus communication and no physical PNC

Restrictions for CAN
m J1939 and PN exclude each other, due to address claiming and J1939 start-up behaviour

m J1939 need to register first their address in the network before they are allowed to start
communication after a wake-up.

m A J1939 bus not using address claiming can however be activated using PN as a CAN slave
bus as described above

Restrictions on FlexRay
m FlexRay is only supported for requesting and releasing PNCs.
m FlexRay nodes cannot be shut down since there is no HW available which supports PN.

* All nodes connected to the slave buses are always activated. It is not possible only to activate a subset of the nodes.

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Energy Management — Partial Networking
Mapping of Virtual Function Cluster to Partial Network Cluster

SW-C SW-Component of VFC1

SW-Component of VFC2

SW-C
1

SW-C SW-Component of VFC3

CompositionType

[0 Communication Port

| [VFClJ vrc2 | [vFcs |
VS il el

[PnC1] [PNe2]

ECUA ECUB ECUC

* Here both Partial Networks
map to one CAN bus.

* One Partial Network can also
span more than one bus.

[Pnc1) [Pnc2]

ECU Hardware ﬁ

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Energy Management — Partial Networking
Involved modules — Solution for CAN

Application Layer

* VFC to PNC to channel
translation
e Coordination of -PDU

* PNC management (request/
group switching Mode Calmbil L=l - release of PNCs)
- Start / stop I-PDU-groups request Request « Indication of PNC states

\’—f
+ Exchange PNCrequest/release] |

information between NMand
ComMyvia NM user data
» Enable/disable I-PDU-groups

li

Filterincoming NMmessages
Collectinternal and external PNC requests
Send out PNC requestinfocmationin NM user data
Spontaneous sending of NM messages on PNC
startup

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Energy Management — ECU Degradation
Involved modules — Solution for I/O Drivers

Mode
request
A
| £

Switch power state

Document ID 53 : R22-11
AUTOSAR_EXP_LayeredSoftwareArchitecture of 193

Energy Management — ECU Degradation
Restrictions

—
o
Q
Q
[

e
)
=}
@©
o

» ECU Degradation is currently supported only on MCAL drivers Pwm and Adc.
» Core HALT and ECU sleep are considered mutually exclusive modes.

» Clock modifications as a means of reducing power consumption are not in the scope of the
concept (but still remain available as specific MCU driver configurations).

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

[50)
o
)
o)
=
e
()
=)
@
o

Table of contents

1. Architecture
2. Configuration
3. Integration and Runtime Aspects

1.

© © N o o &M W DN

Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic
Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

L0
[8)
%)

4]
=)}

S
()
=)
@
%

Integration and Runtime Aspects — Global Time Synchronization

Global Time Synchronization provides synchronized time base(s) over multiple in-vehicle
networks.

StbM provides the following features: RTE
» Time provision

» Time base status
> Time gateway

cation
Manager

CanTSyn / FrTSyn / EthTSyn provides

the network-specific time synchronization
protocol

EthTSyn provides additionally a rate-
correction and latency calculation.
CanTSyn FrTSyn EhTSyn
Tp

Use-case examples:
» Sensor data fusion
» Cross-ECU logging

Sychronized Timebase Manager Diagnostic
i AUTOSAR Communi-
COM

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Secure Global Time Synchronization

©
)
%)
I
=)

S
()
=)
]
o

Secure Global Time Synchronization ensures integrity and authenticity of synchronized time
base(s) over in-vehicle networks.

Application Layer

Master - SWC

Slave - SWC
Authentic global time Authentic global time
/1N

Application Layer

?
y

Authentic
Authentic global time ICV
global time

= 1 |

Authentic Authentic
global time global time

Secured Global Time Secured Global Time
ICV: Integrity Check Value

FV: FreshnessValue
FVM: Freshness Value Manager

AUTO SAR"

Document ID 53 :

AUTOSAR_EXP_LayeredSoftwareArchitecture

