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1. Introduction — The Virtues of DeepThought and Shallow Surmise

Deepthoughthaslong beenconsidereda virtue. For centuries,the philosophers
of antiquity havebeenseenas paragonf their civilizations; today, we similarly
revereourjudgesandjusticeswho ponderpresentactsandpastprecedentto reach
wise and fair conclusions.Aristotle namedreasonand the practical application
of intelligenceasvirtues, and Descarteseld thoughtto be the very definition of
existencgSahakian1968);recently,activethinking hasbeenproposedo improve
existenceactually increasinghealthandlongevity (Holden, 1998). The ability to
deliberateand ponderone’s actionsis also often seenasa defining characteristic
solelyof humanexistencedistinguishingusfrom themore-reflexiveanimals Even
whenthisview is challengedasit hasbeenincreasinglyof late by primateresearch
(e.g.,WhitenandByrne, 1998— but seeHeyes,1998for counter-argumentsjhe
challengeserveprimarily to increaseour estimationrandrespecfor theotherlucky
specieshownto be capableof anyintricate cogitationthatrivals our own.

We deep-thinkinghumanshavealsostrivento emulatedeepthoughtin thema-
chineswe build, creatingartificial intelligencesand decisiontools that mimic or
enhancehe humanmind. Expertsystemsgdata-miningsoftware artificial theorem
provers,andchess-playingomputersall performelaboratecalculationsor process
greatamountsof information in an attemptto approachand sometimesexceed
humandecision-makingpower. Thesecomplex decisionmachinesmake up one
focusof this specialissueof Mindsand Machines And becaus¢he humanmindis
oftenviewedasakind of computeritself (GigerenzemndGoldstein, 1996b),many
wouldincludeit in this complex-cogitatorcategoryaswell.

But might therenot be an alternativeto all this heavythinking? After all, hu-
mansarealsorenownedor makingsnapjudgmentsjumpingto conclusionsand
ignoring the evidence.Are we alwayswrong to do so, when we could ponder
deeplyinsteadRecentlyresearcihasbegunto suggesthatsimpleinferencemech-
anismsor heuristicscanbesurprisinglyuseful(e.g.,Payneetal., 1993;Gigerenzer,
Todd, andthe ABC ResearclhGroup,1999)— ‘fast andfrugal’ thinking may be
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justaseffectiveaslong andseriousconsideratiorin manysituations.Thus,simple
heuristicsare the secondfocus of this issue,and as they are the new decision-
makersin town we are primarily interestecherein giving thema chanceto prove
theirworth in the strugglebetweerdeepthoughtandquick choice.

Of course few would takethe statedoppositionof simpleinferenceheuristics
versuscomplexdecisionmachinesasanintractableeither-orproposition: Rather,
theauthorsin this issueseebothapproachesaspotentiallyviable meandor reach-
ing good decisions.The questionsof interestlie morein determiningwhenand
whereeachapproachs bestusedby minds,machinespr bothworking in combi-
nation.

In this introductoryessay] will first briefly sketchsomeaspectf the history
of the debatebetweensimpleandcomplexapproacheso decisionmaking,before
presentingfurther argumentdor studying simple heuristics,and an overview of
four classesf heuristicsthatare discussedt pointsthroughoutthe papersn this
issuel will thenshowhowthesepapersaaddressomeof themostimportanthemes
from the simpleversuscomplexdecision-makinglebate andindicatesomeof the
problemsthatremainto betackled.

2. A Brief and Spotty History of Simple versusComplex DecisionMaking

In the early 1800s, Pierre Simon Laplaceimaginedthe form that the ultimate
decisionmakerwould take:

Given ... anintelligencewhich could comprehendall the forces by which

natureis animatedandthe respectivesituationof the beingswho composeit

— anintelligencesufficiently vastto submitthesedatato analysis. . . nothing
would be uncertainand the future as the past,would be presentto its eyes.
(Laplace,1814/1951p. 4).

Fromtheperspectiveof Laplace’ssuperintelligencelNatureis deterministicand
certain,and properdecisionscan be arrived at throughsufficient calculation; but
for humansNatureis fickle and uncertain,andinferencesmustbe madeon the
basisof unreliablecues.Although omniscienceandcertaintyarenot attainablefor
anyrealsystemthe spirit of Laplace’ssuperintelligencéassurvivednevertheless
in the vision of unboundedrationality. This form of rationality is often defined
by its adherenceo the laws of logic and probability theory, and is the basisof
the assumption®f propereconomicbehaviorembodiedn Homoeconomicusas
well asforming the foundationsof the theoriesof planningandproblemsolvingin
traditional artificial intelligenceandoptimal (animal) behaviorusedin behavioral
ecology(seeGoodieetal.,1999).Thelofty goalsandstrict standardef unbounded
rationality, by their very definition, requirethe useof complexdecisionmachines
to processall availableinformation,without regardfor costsor limitationsin time,

* However,de Garis (1999), for one, seessinister possibilitiesin just this sort of opposition,
envisioningabattlein the not-too-distanfuturebetweerthoseintenton building ever-more-complex
decisionmachinesandthosewho valuemoreorganicthoughtprocesses.
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processingoower, or knowledge.Again, real systemscannotfeasibly live up to
theserequirementshutthegoalof unboundedationalityimpliesthemorecomplex
decisionprocessingthe better.

To reachanswersand makechoicesin a usefulamountof time, real decision
systemanustemploy limited information searchwhereasmodelsof unbounded
rationality assumehatsearchcango on indefinitely. In reasonablenodels,search
mustbe limited becauseaeal decisionmakershaveonly a finite amountof time,
knowledge attention,or moneyto spendon a particulardecision.Limited search
requiresa way to decidewhento stoplooking for information, thatis, a stopping
rule. Oneway to stopinformationsearchis to usea stoppingrule that optimizes
searchwith respectto the time, computation,money, and other resourceseing
spent.More specifically,this ‘optimization underconstraints'vision of rationality
holdsthat the decisionmakershouldcalculatethe benefitsand costsof searching
for eachfurther pieceof informationandstopsearchassoonasthe costsoutweigh
the benefits(e.g.,Sargent,1993; Stigler, 1961). Therule ‘stop searchwhen costs
outweighbenefits’soundsplausibleat first glance.But a closerlook revealsthat
optimizationunderconstraintcanrequireevenmoreknowledgeandcomputation
thanunboundedrationality, asall of the costsand benefitsof all of the possible
course®f searchingor not searchingor eachfurtherpieceof informationmustbe
calculatedVriend, 1996).

Of course,few would arguethat real humanshave the time and knowledge
necessaryo performthe massivecomputationgequiredof eitherof theseforms of
rationality. Rather,peopleoften useshortcutsor heuristics— simplemechanisms
thatallow decisionsto be arrived at quickly andwith little mentaleffort. But the
visions of unboundedrationality and optimization under constraintsare usually
presentedhsidealsthathumanor machinereasoningshouldaspireto. The upshot
of theseaspirationgs thatthey makereal human(andanimal,andmachine)reas-
oninglook flawedandirrationalin comparison— andtheythuscasta pall overthe
usefulnesandviability of the simpleheuristicsthatpeopleandanimalsemploy.

Much of the negativeattitude toward reasoningbasedon simple heuristics
emergedin psychologyin the early 1970s,when the ‘heuristics-and-biaseg'e-
searchprogramlaunchedby Tversky and Kahneman(1974) tainted the idea of
simple mentalmechanismdy attachingthem to the value-laden‘'bias’ term in
a single inseparablgphrase.Within this program,heuristicswere invoked asthe
explanationwhenevererrors— mainly deviationsfrom the laws of probability
— werefoundin humanreasoningAlthough Tverskyand Kahnemarrepeatedly
assertedhat heuristicssometimesucceedandsometimedail, their experimental
resultsweretypically interpretedasindicatingsomekind of fallacy stemmingfrom
theuseof heuristics.

Vindication of the usefulnes®f simple heuristicscamea few yearslater from
an unlikely source:robotics. Tired of the failures of the traditional ‘good old-
fashionedAl' approactto getrobotsto movemorethanafew feetacrossaroomin
anhour,someresearchergaveup onattemptingo havetheir robotsbuild complete
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world-modelsand extensiveplansfollowing the dictumsof standardtheoriesof

rationality. Instead theytried building in hierarchiesof simplerulesto befollowed

(e.g.,“go forward aslong as pathis not blocked”; “when pathis blocked, back
up andturn slightly”), anddiscoveredhat this approachyielded muchfasterand
morerobustbehavior(Brooks,1991; seealsoBraitenberg, 1984, for a discussion
of how complexity is too readily attributedto the behavioraloutcomeof simple
mechanismsand Noble & Todd, in press,on the use of robot and simulation
modelsto combatsuchfalseattributionswhenstudying‘imitative’ behaviors).

At aboutthe sametime, evidencebeganto grow thathumanscould usesimple
decisionmechanismso good advantageExpertswere shownto basetheir judg-
mentson surprisinglyfew piecesof information(Shanteau] 992).It wasfoundthat
peoplecouldtradeoff the effort involved in makinga choiceagainstthe accuracy
of thatchoice,andchooseasimpledecisionstrategythatwould achievethedesired
balance(Payneet al., 1993).And simple heuristicsthat useonly a single pieceof
information to makea choice betweentwo alternativeswere discoveredto rival
the performanceof muchmorecomplexandinformation-hungrymethodssuchas
multiple linear regression(Gigerenzerand Goldstein,1996a).Thus, rather than
taking the useof heuristicsasevidencethat peoplecando little morethanexhibit
flawed instantiationsof the perfectrationality they should aspireto, many now
suspecthatit maywell betheseaspirationghatareflawed— reasoningit seems,
canbe powerfulandaccuratevithout requiringunlimited time andknowledge.

3. How to Study Simple DecisionMechanisms

But justhowcansimpledecisionmechanismsnakeappropriatechoicesandinfer-
encesWhatformsof boundedrationality — asopposedo unboundedationality
or optimization under constraints— work effectively, and why? The ‘father’ of
boundedrationality, Herbert Simon, viewed his conceptionas having two inter
locking componentsthe limitations of the (human)mind, andthe structureof the
environmentsn which the mind operategseeGigerenzemndSelten,in pressfor
recentwork following on theseideas).The first componentof his vision means
that modelsof (human)judgmentand decisionmaking should be built on what
we actually know aboutthe mind’s capacitiesratherthan on fictitious competen-
cies.Becauseof the mind’s limitations, humans‘must useapproximatemethods
to handlemost tasks” (Simon, 1990, p. 6). Thesemethodsinclude recognition
processeshat largely obviatethe needfor further information search,heuristics
thatguidesearchanddeterminewvhenit shouldend,andsimpledecisionrulesthat
makeuseof the informationfound.

The secondcomponenbf Simon’sview of boundedrationality, environmental
structure,is of crucial importancebecauseat canexplain whenand why simple
heuristicsperformwell: if the structureof the heuristicis adaptedo the structure
of theinformationin the environmentSimon(1956)illustratedthe importanceof
this componenearly on throughan exampleof a hypotheticalorganismsearching
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for food in a particularenvironment;othershavemadesimilar points both before
hiswork (e.g.,Brunswik,1943)andat varioustimessince(e.g.,Anderson,1990),
including the extremestatementonly the environmentneedbe studied,not the
mechanism®f the mind (e.g.,Gibson,1979). But in generalthe secondpart of

Simon’s (1956) papertitle, “Rational choice and the structureof environments,”
hasbeenneglectedn mainstreancognitive scienceqevenby Simonhimself —

seeSimon,1987).

To bring environmentabtructurebackinto the studyof bounded-ationality, we
needa new focus on ecologicalrationality. Traditional definitions of rationality
are concernedvith maintaininginternal order of beliefsandinferencesBut real
organismsspendmost of their time dealing with the externaldisorderof their
environment,trying the make the decisionsthat will allow themto survive and
reproduce.To behaveadaptivelyin the face of environmentalkchallengesprgan-
isms must be able to makeinferencesthat are fast, frugal, and accurate.These
real-world requirementdead to a new conceptionthat properreasoningmustbe
ecologicallyrational, arisingfrom decisionmechanismshat are matched(thatis,
adapted)to the particular structureof informationin the environmentsn which
they are applied. The study of ecologicalrationality thus involves analyzingthe
structureof environmentsthe structureof heuristics andthe matchbetweerthem.

We can now restatethe questionsbeginningthis section:How is ecological
rationality possible?T hatis, how canfastandfrugal heuristicswork aswell asthey
do, and escapehe tradeoffsbetweendifferent real-world criteria including speed
andaccuracy?The main reasonfor their successs that they makea tradeoffon
anotherdimension:thatof generalityversusspecificity. While internalcriteria for
the coherencef decisionsarevery general— logical consistencyor instancecan
be appliedto anydomain— the correspondenceriteriathat measurea heuristic's
performanceagainstthe realworld requiremuchmore domain-specifisolutions.
What works to makequick and accurateinferencesin one domainmay well not
work in another(seeBullock & Todd, this issue,for a discussion).Thus, differ-
entenvironmentsan havedifferent specificfastandfrugal heuristicsthat exploit
their particularinformation structureto make adaptivedecisions.But specificity
canalsobe a danger:if a different heuristicwererequiredfor everyslightly dif-
ferentdecision-makingenvironmentwe would needan unworkablemultitude of
heuristicsto reasonwith, and we would not be able to generalizeto previously
unencountereeénvironmentsFastandfrugal heuristicscanavoidthis trap by their
very simplicity, which allowsthemto berobustin thefaceof environmentathange
andenableghemto generalizewnell to newsituations(seeMartignonand Schmitt,
thisissue).

Robustnesgijoeshandin handwith speed,accuracy,and especiallyinforma-
tion frugality. Simple heuristicscanreduceoverfitting (focusingtoo muchon the
specificdetailsin a particular dataset) by ignoring the noise inherentin many
cuesandlooking insteadfor the ‘swampingforces’reflectedn the mostimportant
cues.Thus,simply usingonly oneor a few of the mostusefulcuescanautomatic-
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ally yield robustnesskurthermorejmportantcuesarelikely to remainimportant.
Theinformativerelationshipsin the environmentarelikely to hold true whenthe
environmenthangesBecausef this pattern fastandfrugal heuristicsthatpay at-
tentionto systematianformative cueswhile overlookingmorevariableuninform

ative cuescanride out environmentathangewithout sufferingmuchdecremenin

performanceThus, simple heuristicsand environmentalstructurecan both work

handin handto providearealisticalternativeto the ideal of optimization,whether
unboundedr constrained.

The researchprogramproposedby Gigerenzerand colleaguegGigerenzeret
al., 1999)for studyingthe simple boundedlyrational heuristicsthat humansand
animalsuseinvolves (1) proposingand specifyingcomputationaimodelsof can-
didatesimpleheuristics,(2) analyzingthe environmentaktructuresn which they
perform well, (3) testingtheir performancen real-world environmentsand (4)
determiningwhetherand when peoplereally usetheseheuristics.The resultsof
the investigatorystages2 through4 canbe usedto inform the initial theorizing
of stagel. Thedifferent stagesof this researctprogramreston multiple methods,
includingtheoreticaimodelingof heuristics computersimulationof their perform
ancemathematicaanalysisof thefit betweerheuristicsaandspecificenvironments,
andlaboratoryexperimentation(Whenthe goalis designingsimple heuristicsfor
artificial decision-makingagentdo use ratherthaninvestigatingwhathumansand
animalsactuallyuse the fourth stepof this processcanbe omitted.)

3.1. BUILDING SIMPLE HEURISTICSFROM SIMPLE BUILDING BLOCKS

To study particularheuristicsin detail, computationaimodelsmustbe developed
that specify the precisestepsof information gatheringand processingthat are
involved in generatinga decision,allowing the heuristicto be instantiatedas a
computerprogram.In particular,simple fastandfrugal heuristicsare madeup of

building blocks that guide searchfor alternativesjnformation, or both, stop that
searchandmakeadecision.

3.1.1. Building Blocksfor Guiding Search

Decisionsmust be made betweenalternatives,and basedon information about
thosealternativesin different situations thosealternativesandpiecesof informa-
tion may needto be found throughactive search.The building blocksfor guiding
searchwhetheracrossalternativesor information, are what give searchits direc-
tion (if it hasone).Forinstance searchfor cuescanbe simply random,or in order
of someprecomputedcriterion relatedto their usefulnesspr basedon a recol-
lection aboutwhich cuesworked previouslywhenmakingthe samedecision(see
Sectiord.2belowonone-reasonlecisionmechanisms)SearcHor alternativesan
similarly be randomor ordered.Fastand frugal search-guidingprinciplesdo not
useextensivecomputationsor knowledgeto figure out whereto look next.
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3.1.2. Building Blocksfor StoppingSearch

To respectthe temporallimitations of the humanmind (or that of any realistic
decision-makingagent),searchfor alternativesor information mustbe terminated
at somepoint. Moreover, owing to the computationallimitations of boundedly
rational agents,the methodfor determiningwhento stop searchshould not be

overly complicated Forexample pnesimplestoppingrule is to ceasesearchingor

informationandmakea decisionassoonasthefirst cueor reasorthatfavorsoneal-

ternativeis found (asembodiedn one-reasomlecisionmaking— seeSectiord.2).

This andothercue-basedtoppingrulesdo not needto computean optimal cost—
benefittradeoff asin optimizationunderconstraintsin fact, theyneednotcompute
any costsor benefitsat all. For searchamongalternativessimple aspiration-level
stoppingrulescanbe used(seeSection4.4 below on satisficingsearch).

3.1.3. Building Blocksfor DecisionMaking

Oncesearchhasbeenguidedto find theappropriatealternativesor informationand
thenbeenstopped a final type of building block canbe called uponto makethe
decisionor inferencebasedn theresultsof the searchThesecomponentganalso
bevery simpleandcomputationallyboundedForinstance a decisionor inference
canbe basedon only onecueor reasonwhateverthe total numberof cuesfound
duringsearch(seeSections4.1onignorance-basednd4.2 on one-reasomlecision
mechanisms)Suchsingle-cuedecisionmakingdoesnotneedto weightor combine
cuesandsonocommoncurrencybetweercuesneedbedeterminedDecisionscan
alsobemadethroughasimpleeliminationprocessin whichalternativesarethrown
out by successiveuesuntil only onefinal choiceremains(seeSection4.3 below
on eliminationheuristics).

Thesebuilding blocks canbe put togetherto form a variety of fastandfrugal
heuristics.Given that the mind is a biological ratherthana purely logical entity,
formedthrougha processf successivaccrual borrowing,andrefinemenbf com
ponentsjt seemgeasonabléo assumeahatnew heuristicsarebuilt from the parts
of old onesratherthanfrom scratch(Pinker,1998).Following thisassumptiontwo
main methodscan be usedto constructcomputationaimodelsof fast and frugal
heuristics: combining building blocks and nesting existing heuristics. Building
blocks can be combinedin multiple ways, thoughnot arbitrarily: for instance,a
fastandfrugal heuristicfor two-alternativechoicethat stopsinformationsearchat
thefirst cueonwhichthealternativesliffer mustalsouseadecisionprinciplebased
onone-reasomlecisionmaking.Wholefastandfrugal heuristicscanthemselvebe
combinedby nestingoneinside anotherAs an example the recognitionheuristic
(seeSectiond.1) works on the basisof an elementarycognitive capacity,recogni-
tion memory,butit canalsoserveasthefirst stepof one-reasomlecisionheuristics
that draw on other capacities,such as recall memory. Recognitionmemory de-
velopsearlierthanrecallmemoryboth ontogeneticallyandevolutionarily,andthe
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nestingof heuristicscan similarly be seenasanalogoudo the addition of a new
adaptatioron top of anexistingone.

3.2. FILLING THE MIND’S ADAPTIVE TOOLBOX

The various simple heuristicsthat are built up from building blocks and other
nestedheuristicscan all be thoughtof as making up part of the adaptivetool-
box the collection of specializedcognitive mechanismghat evolution has built
into the humanmind for specificdomainsof inferenceandreasoningGigerenzer
andTodd, 1999;seealsoCosmidesand Tooby, 1992; Payneet al., 1993). The ad-
aptivetoolbox containsall mannerof psychologicalasopposedo morphological
or physiological)adaptationsThesencludeso-calledlower-order’ perceptuaand
memoryprocessesvhich canbefairly automatic,suchasdepthperceptionaudit-
ory sceneanalysisandfacerecognitionaswell as‘higher-order'processethatare
basedon the ‘lower’ processeandcanbe at leastpartly accessiblgo conscious-
nessWithin the classof higher-ordementalprocessefall fastandfrugal heurist-
ics for decisionmaking, which themselveoften call uponlower-orderprocesses
of cueperceptiorandmemory.

Lower-orderperceptuahndmemoryprocessesuchasfaceandvoice recogni-
tion arecomplexanddifficult to unravel,in partbecaus¢heymakeuseof massively
parallelcomputationsNo onehasyet managedo build a machinethatrecognizes
facesaswell asa 2-year-oldchild. Now considera higher-orderdecisionmech-
anismthat makesinferencesbasedon theseprocessesthe recognitionheuristic
mentionedearlier (seealso Section4.1). This fastandfrugal heuristicusesrecog-
nition to makerapidinferencesaboutunknownaspectf theworld: Forinstance,
food whosetasteone recognizedss probably saferthan unrecognizedood, and
a university whosenameone hasheardof probably providesa more prestigious
educationthan one whosenameis unfamiliar. Although the mechanismof re-
cognitionmemorymay be intricate and complex,the recognitionheuristiccanbe
describedcasanalgorithmjust afew stepsiong. We do not needto know precisely
how recognitionmemoryworks to describea heuristicthat relieson recognition.
This exampleillustratesan apparentlyparadoxicalthesis:higher-order cognitive
mechanismsan often be modeledby simpler algorithms than can lower-order
mechanisms.

This thesisis not new, having beenproposedin variousforms over the past
century (e.g.,by proponentsof the Wirzburgschoolof psychologyin the early
1900s— seeKusch,1999).But it is centralto the discussiorof whenwe should
postulatesimple versuscomplex decision mechanismsn the adaptivetoolbox.
In particular, it offers us a way to evadethe withering firepower of Morgan’s
Canon,the dictum that we mustalways prefer lower psychologicalprocessess
explanationsover higher psychologicalprocessesMorgan’s Canonwould have
us explainany given observedchoicebehaviorasthe outcomeof the lowestpos-
sible psychologicalmechanismno matter how complexthat mechanismmight
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be. But armedonly with Occam’sRazor (seeForster,this issue,and Martignon
and Schmitt, this issue),a preferencdor simplicity can overcomethe barrageof
Morgan’s Canonandallow usto proposeinsteadhigher-orderdecisionprocesses
achievedvia simple heuristics.(Fodor'sPop Gun, insistingthat we alwaysprefer
a higher-ordermechanismas an explanationover a lower-orderone, can bring
us to the sameoutcome— seeFodor, 1999; but as Fodor himself says,thereis
no principled reasonto prefer his Pop Gun over Morgan’s Canon,or vice versa,
whereagherearemanyargumentgor usingOccam’sRazor,asdiscussedn some
of the papersin this issue.)We now tum to an overview of someof the kinds of
high-ordersimpleheuristicsthat canfill the mind’s adaptivetoolbox.

4. Four Families of Simple Heuristics

The decision-makingouilding blocks just describedcan be put togetherto form
classe®r familiesof heuristicasvhosemembersrerelatedby theparticularsearch,
stop, or decisionrulesthey use.In this sectionl briefly introducefour suchfam-
ilies of heuristics(out of manypossible)coveringdecisionsituationsthatvary in
the amountof information available,the numberof optionsto choosebetween,
andthe distribution of optionsin time or space.Theseheuristicscan be seenas
modelsof the behaviorof both living organismsand artificial systems.From a
descriptivestandpointtheyareintendedto capturehow realmindsmakedecisions
underconstraintf limited time andknowledge From an engineeringstandpoint,
theseheuristicssuggestwaysto build artificially intelligent systems— artificial
decision-makerghatarenot paralyzedoy the needfor vastamountsof knowledge
or for extensivecomputationapower.

4.1. IGNORANCEBASED DECISION MECHANISMS

Oneof thesimplestformsof decisionthatcanbe madeis to selectoneoptionfrom
two possibilities,accordingto somecriterion on which the two canbe compared.
What simple cognitive mechanismsan be usedto makethis type of decision?
This will dependon the amountand type of information that is availablein the
environmentlf the only information availableis whetheror not eachpossibility
haseverbeenencounteredbefore,thenthe decisionmakercando little betterthan
rely on his or her own partial ignorance,choosingeither recognizedoptions or
unrecognizednes.For heuristicsapplicableto suchsituations,their information
searchbuilding block merely specifiesthat recognition should be assessedor
the alternativesbeing comparedithe searchstoppingbuilding block limits con-
siderationto only this recognitioninformation; and the decisionbuilding block
indicatesexactly how recognitioninformation determinesthe final choice. This
‘ignorance-basedeasoning’is embodiedin the recognitionheuristic(Gigerenzer
andGoldstein,1996a;Goldsteinand Gigerenzer1999), which usesthe following
decisionrule: whenchoosingbetweentwo objects(accordingto somecriterion),
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if oneis recognizedand the otheris not, then selectthe former. For instance,
Norway rats haveevolvedto behaveaccordingto a rule of this type, preferring
to eatthings they recognizethrough pastexperiencewith otherrats (e.g.,items
they havesmelledon the breathof others)overnovelitems(Galef,1987).

Following therecognitionheuristicwill yield correctresponsemoreoftenthan
would randomchoicein thosedecisionenvironmentsn which exposureto dif-
ferent possibilitiesis positively correlatedwith their ranking along the decision
criterion beingused.Thus,therats’ food preferencecopying presumablyevolved
becausethe things that other rats have eaten(i.e., recognizeditems) are more
often palatablethanare random(unrecognized)tems sampledfrom the environ-
ment. Such useablecorrelationsare likely to be presentfor specieswith social
information exchangewvhereimportantenvironmentalobjectsare communicated
and unimportantonesareignored,aswell asfor speciesin environmentsvhere
importantenvironmentalobjectsare simply encounterednore often or earlierin
life.

4.2. ONE-REASONDECISION MECHANISMS

When multiple piecesof information are available (beyondonly recognition),a
secondclassof simple heuristicsbecomesapplicable:thosethat rely on just a
singlecueto makea decision.Imaginethatwe againhavetwo objectsto compare
on somectriterion, andseveralkuesthatcould be usedto assesgachobjectonthe
criterion. A one-reasorecisionheuristiccould thenwork asfollows: (1) selecta
cue dimensionusing somesearchbuilding block andlook for the corresponding
cue valuesof eachoption; (2) comparethe two optionson their valuesfor that
cuedimension;(3) if theydiffer, thenstop(this is the stop-searchbuilding block),
andchoosethe option with the cue valueindicating a greatervalue on the choice
criterion (the decisionbuilding block); (4) if the optionsdo not differ, thenreturn
to the beginningof this loop (stepl) to look for anothercue dimension.Sucha
heuristicwill often haveto look up morethanone cuebeforemakinga decision,
but the simple stoppingrule (in step3) ensureghat asfew cuesas possiblewill
be sought,minimizing the time neededfor information search.Furthermore ul-
timately only a single cue will be usedto determinethe choice, minimizing the
amountof computationthatmustbe done.

To finish specifying a particular simple heuristic of this type, we must also
determineexactly how cue dimensionsare ‘looked for’ in stepl — thatis, we
mustpick a specificinformationsearchbuilding block. Forinstancethe TakeThe
Bestheuristicsearchegor cuesin the orderof their ecologicalvalidity — thatis,
their correlationwith the decisioncriterion, while the Minimalist heuristicselects
cuesin arandomorder(GigerenzeandGoldstein,1996a,1999;seeMartignonand
Schmitt,this issue,and Bullock and Todd, this issue for discussion&ndcompar
isonwith otherdecisionmechanisms)Again, bothstoptheirinformationsearchas
soonasa cueis foundthatallows a decisionto be madebetweerthe two options.
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Despite (or often becauseof) their simplicity and disregardfor most of the
availableinformation, thesetwo fast and frugal heuristicscan make very accu-
rate choices.A setof 20 environmentswvas collectedto test the performanceof
theseheuristics,varying in numberof objectsand numberof availablecues,and
rangingin contentfrom the populationsizesof Germancities to fish fertility to
high-schooldropout rates (Czerlinski et al., 1999). The decisionaccuraciesof
Take The Bestand Minimalist were comparedwith thoseof two moretraditional
decisionmechanismghat useall availableinformation and combineit in more
or lesssophisticatedvays: multiple regressionwhich weightsand sumsall cues
in anoptimallinear fashion,and Dawes’sRule, which countsup the positiveand
negativecuesand subtractsthe latter from the former. The two fast and frugal
heuristicsalwayscamecloseto, and often exceededthe performanceof the tra-
ditional algorithmswhen all were testedon the datathey were trainedon (data
fitting). This surprisingperformanceon the part of Take The BestandMinimalist
wasachievedeventhoughthey only lookedthroughathird of the cueson average
(andonly decidedusingoneof them),while multiple regressiorandDawes’sRule
usedthem all. The advantage®f simplicity grew in the more importanttest of
generalizationperformancewherethe decisionmechanismsvere assessedn a
portionof eachdatasetthattheyhadnotseerduringtraining;in thatcase TakeThe
Bestoutperformedll threeotheralgorithmsby a clearmargin. Thus,makinggood
decisionmeednotrely onthe standardationalapproactof collectingall available
informationandcombiningit accordingto the relativeimportanceof eachcue—
simply betting on one good reason,evenone selectedat random,can provide a
competitivelevel of accuracyin avariety of environments.

4.3. ELIMINATION HEURISTICSFOR MULTIPLE-OPTION CHOICES

Theseesultsontheefficacyof simpleheuristican structuredenvironmentsarenot
restrictedto decisionsmadebetweentwo objects.More generally,fastandfrugal
heuristicscanalsobe found thatuseasfew cuesaspossibleto categorizeobjects.
Categorizationby Elimination (Berrettyet al., 1997), similar to Tversky’s(1972)
Elimination by Aspectsmodelof preference-basechoicesuponwhichit is based,
usesonecueafteranotheiin aparticularorderto narrowdownthe setof remaining
possiblecategoriesuntil only a single one remains.When cuesare orderedin
termsof their usefulnesdn predicting the environment,accuratecategorization
canbeachievedusingonly thefirst few of the availablecues.Evenmoreaccurate
performancecanarisewhencategorizatioris basedon only a single cuethrough
the useof a fine-grainedcue-value-to-categorynap (Holte, 1993), providedthe
decisionmakeris ableto makethe tradeoffrequiredbetweenextramemoryand
increasedccuracy.

Estimationcan also be performedaccuratelyby a simple algorithm that ex-
ploits environmentswith a particular structure.The QuickEstheuristic (Hertwig
et al., 1999) is designedto estimatethe valuesof objectsalong somecriterion
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while using aslittle information as possible.To estimatethe criterion value of a
particular object, the heuristic looks through the availablecuesor featuresin a
criterion-determinedrder, until it comesto the first onethat the objectdoesnot
possessAt this point QuickEststopssearchingfor any further information and
producesan estimatebasedon criterion valuesassociatedvith the absencef the
lastcue.QuickEstprovesto befastandfrugal, aswell asaccuratein environments
characterizedby a distribution of criterion valuesin which small valuesare com
monandbig valuesarerare(aso-called J-shapeddistribution).Suchdistributions
characterizavariety of naturallyoccurringphenomenancludingmanyformedby
accretionangrowth (e.g.cities, somebusinessestc.).

4.4. SATISFICING HEURISTICSFOR SEQUENTIAL CHOICES

Theheuristicspresentedgofar assumehatall of the possibleoptionsto be chosen
betweenare presentlyavailableto the decisionmaker.But a different strategyis
called for when alternatives(as opposedto information aboutthe alternatives)
take time to find, appearingsequentiallyover an extendedperiod or spatial re-
gion. In this type of choicetask, a fast andfrugal reasonemeednot (only) limit
information search put (also) musthavea stoppingrule for endingthe searchfor
alternativeghemselvesOneinstanceof this type of problemis the challengethat
facesindividuals searchingfor a matefrom a streamof potentialcandidatesnet
at different pointsin time; anotherinstanceis the searchfor amenabléhabitatsin
whichto settle. Here,HerbertSimon’'s(1955,1990)notion of a satisficingheuristic
is applicable:An aspirationlevel is setfor the selectioncriterion beingused,and
thesearcHor alternativess stoppedassoonastheaspirationis met. Simplemech-
anismscanbeusedto settheaspiratiorlevelin thefirst place,suchascheckingthe
first few alternativesandtaking the bestvalue seenin thatsetasthe level to beat
in further search(Todd, 1997; Todd and Miller, 1999; seeGoodrich,Stirling and
Boer,thisissuefor moreon satisficingapproaches)lhetrick hereis to balancehe
desirefor a short,fastandfrugal searchon the onehand(achievedoy checkingas
few initial alternativesaspossible)againsthe needfor enoughinformationabout
the potential alternativesto setan appropriateaspirationlevel on the otherhand
(achievedby checkingasmanyinitial alternativesaspossible).

5. Extending the Study of Simple Heuristics
5.1. EXTENSIONSPRESENTEDIN THIS ISSUE

The classeof simple heuristicsjust describedrepresensomeof the initial land-
marksthat havebeenexploredin the studyof simpleinferenceheuristicsin com
parisonwith complexdecisionmachinesThe papersn this specialissueof Minds
and Machinesextendthis exploration,focusingon the importanceof environment
structure theway thatsimplicity canleadto robustnessandhow simplestrategies
can do useful work. First, Terry Connolly discusseshe kinds of environments
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andtasksin which simple‘hedge-trimming’decisionstrategieghatactquickly on
the basisof little informationwill be moreappropriatehancomplex‘tree-felling’

strategieshatgathemasse®f evidenceandponderit thoroughlybeforedeciding.
Wheninformationis costly or difficult to obtainandincrementakctionscanmake
useful progress.the former approachis called for; when decisionsand actions
havean ‘all-or-nothing’ charactermndtheir outcomesare crucial andirreversible,
it makessensdo fell thetreecarefully.

SethBullock and PeterTodd continuethis investigationof the impactof de-
cisionimportanceor significance aswell asof decisionprevalenceor frequency,
on the kinds of choice mechanismghat fare betteror worsein different envir-
onments.Whenthe frequencystructureof an environmentis skewed— making
somechoicesconfronta decision-makemuch more often than others— certain
heuristicsshowa particularsensitivity to this structure,and hencecanexploit the
environmentfor better performanceBy skewing an environment’ssignificance
structure— making somedecisionsmuch more importantthan others, for ex-
amplegiving somewrong choiceslethal consequences- morecomplexdecision
strategiesakin to Connolly'stree-fellingapproachesyeginto haveanadvantage.

In his paperon how simple mechanismgould everfit the environmentstruc-
turesof acomplexworld, Malcolm Forsterargueghatthisis only possiblebecause
adegreeof complexityis hidden‘underthe hood’ of the simplemechanismsThe
structureof any givensimplemechanisnmusthavebuilt into it someassumptions
aboutthe structureof the problemsto which thatmechanisnwill beapplied,mak-
ing it domain-specifitco someextent.Making thewrongassumptionsanseriously
hindertheperformancef analgorithm;butbuilding in theright structurecanyield
simple mechanismghat generalizerobustly to decisionsacrosstheir particular
domain.

This robustnes$rom simplicity themeis takenup further by LauraMartignon
andMichael Schmitt. Theyshowhow evenasimpletask— comparingtwo objects
on the basisof a setof binary cues— can be tackled by a variety of decision
mechanismsincluding the one-reasorneuristicsdescribedearlier, decisiontrees,
Bayesiannetworks,and estimationalgorithms.Within eachof theseapproaches,
a complexor optimal strategycan be comparedwith a simple ‘fast and frugal’
mechanismMartignonandSchmittdemonstrat¢hattheperformancef thesimple
mechanismsypically approachesandcanoften exceedthatof the morecomplex
strategiesparticularlywhenrobustlygeneralizingto newdata.

KathrynLaskey,BruceD’Ambrosio, Tod Levitt, andSuzannévlahoneypresent
theflip side of Forster'sposition on simplicity built on complexity, arguingthat
complexdecisionmechanismgan only work if groundedin simple reactivein-
ferenceprocessesThey presenta complexdecisionmachinethat they havebuilt
to help military commandergassesshe overwhelmingmasse®f informationthat
flood in from battlegroundsthis systenreliescrucially on theinitial useof simple
quick inferencesto distill that flood. Thus, simple heuristicsenablecomplexin-
formationprocessingnachinego produceoverallassessmenthatareonceagain
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simple,in a form mostuseful for the minds of the peoplemaking the ultimate
decisions.

Finally, Michael Goodrich, Wynn Stirling, and Erwin Boer considerhow a
decision-makinggentcan,atahighermeta-levelchoosebetweeravailablesimple
and complexdecisionstrategiesThe idea of satisficingdescribedearlier canbe
appliedto suchsituations,makingmeta-choiceshatresolvethe tradeoffsbetween
costsandbenefitsof different mechanismsvithoutthe meta-levelprocessingtself
becomingoo complex.This approachs demonstrateth a settingin whichhuman
drivers must decidewhen to take over control of their moving vehicle from an
autonomousspeed-regulatinglevice. Thus, Goodrich, Stirling, and Boer show
anotherway in which simple heuristicsand complex strategies,as well asthe
humanmindsandartificial machinesn whichtheyareusuallyembodiedcanwork
togethereffectively.

5.2. FURTHER ADVANCES

Beyondthe initial landmarksandthe regionsaroundthemexploredin this issue,
there are of coursemany areasstill wide openfor explorationin the territorial
disputebetweersimpleinferenceheuristicsandcomplexdecisionmachinesAfter
all, much of this territory hasonly recentlybeenopenedup. Eachof the papers
in this issueindicatesprofitabledirectionsfor advancingon currentwork; herel
summarizea few of themostpressingopics,clusterednto threemainquestions.

5.2.1. Whenare SimpleHeuristicsor ComplexMechanism#ppropriate?

Researcherdiave begunto identify particular simple heuristicsfor a variety of
restricteddecision tasks, but how far ‘up the cognitive ladder’ of higher-order
processegan this searchbe extendedor example,recentwork in behavioral
ecology and behavioralrobotics points toward simple possibilitiesfor tasksthat
areextendedn time, suchasplanningor navigation(Goodieet al., 1999). What
otherformsof reasoninganheuristicsdbeappliedto?Are therefeaturesof environ-
mentstructurethatdeterminavhensimpleor complexmechanismsreneedednd
which particularmechanisnis bestsuited?We do not haveyet a well-developed
languagdor describinghoseaspect®f environmenstructure whethemphysicalor
social,thatdeterminehe usefulnessndshapehe designof decisionheuristicsIn
studyingthis aspecbf ecologicalrationalitywe shouldturn for inspirationto other
fields, including ecologyand statistics,that have analyzedenvironmentstructure
from different perspectives.

5.2.2. Howis the Appropriate SimpleHeuristicor ComplexAlgorithm Selected?

Thatis, whenmorethanonedecisionmechanisms applicablein agivensituation,
how cana choicebetweenthembe madeMust the adaptivetoolbox be equipped
with anadaptivemechaniavho performsthis selectionWill thechoicebemadeon
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thebasisof theperformancef thevariouscandidatanechanismandthedemands
of the currentsituation (as proposedby Payneet al., 1993; seealso Goodrichet
al., this issue),and if so, what performancecriteria (accuracy,speed,frugality,
robustness|ogical coherencegtc.) are to be used?Or can heuristicsand other
mechanism$e invokedin a moreautomatic simplefashion?The appealof a fast
andfrugal approacho cognitionwill certainlybe decreased thisis notthecase.

5.2.3. Wheredo SimpleHeuristics(and Other DecisionMechanismsCome
From?

How canthe processe®f learningand evolution interactto createthe particular
heuristicsthathumansandanimalsemploy?Are the outlinesof specificheuristics
evolved,and the particular cuesusedin particular environmentghen subjectto
learning?When is individual learning used,and when are new decisionmech-
anisms(or new cues)picked up through social information exchangejncluding
cultureHow canwe asresearchersomeupwith appropriatéheuristicgo investig-
atein humansandanimals(thefirst stepin thefour-stepresearclprocesslescribed
in Section3)? Finally, whenwe are designingartificial decision-makingsystems,
whatengineeringorocessesanwe useto find the mostusefulheuristicsor com
plex mechanisms— artificial evolution, machinelearning, Bayesianapproaches,
or someothermethods?

Tackling thesequestionswill give us furtherinsightsinto the relationshipshe-
tweensimpleinferenceheuristicsandcomplexdecisionmechanismdan the mean-
time, as the papersin this issueattest,we are alreadyconvergingon an image
of simplicity built atop complex underpinnings,complexity emergingfrom the
interactionsof simple mechanismsand virtuous deepthoughtworking handin
handwith fast and frugal snapjudgmentsto yield the decisionsthat shapeour
paths.
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