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1. Introduction — The Virtues of Deep Thought and Shallow Surmise 

Deep thought has long been considered a virtue. For centuries, the philosophers 
of antiquity have been seen as paragons of their civilizations; today, we similarly 
revere our judges and justices who ponder present facts and past precedents to reach 
wise and fair conclusions. Aristotle named reason and the practical application 
of intelligence as virtues, and Descartes held thought to be the very definition of 
existence (Sahakian, 1968); recently, active thinking has been proposed to improve 
existence, actually increasing health and longevity (Holden, 1998). The ability to 
deliberate and ponder one’s actions is also often seen as a defining characteristic 
solely of human existence, distinguishing us from the more-reflexive animals. Even 
when this view is challenged, as it has been increasingly of late by primate research 
(e.g., Whiten and Byrne, 1998 — but see Heyes, 1998 for counter-arguments), the 
challenges serve primarily to increase our estimation and respect for the other lucky 
species shown to be capable of any intricate cogitation that rivals our own. 

We deep-thinking humans have also striven to emulate deep thought in the ma-
chines we build, creating artificial intelligences and decision tools that mimic or 
enhance the human mind. Expert systems, data-mining software, artificial theorem 
provers, and chess-playing computers all perform elaborate calculations or process 
great amounts of information in an attempt to approach and sometimes exceed 
human decision-making power. These complex decision machines make up one 
focus of this special issue of Minds and Machines. And because the human mind is 
often viewed as a kind of computer itself (Gigerenzer and Goldstein, 1996b), many 
would include it in this complex-cogitator category as well. 

But might there not be an alternative to all this heavy thinking? After all, hu-
mans are also renowned for making snap judgments, jumping to conclusions, and 
ignoring the evidence. Are we always wrong to do so, when we could ponder 
deeply instead? Recently, research has begun to suggest that simple inference mech-
anisms or heuristics can be surprisingly useful (e.g., Payne et al., 1993; Gigerenzer, 
Todd, and the ABC Research Group, 1999) — ‘fast and frugal’ thinking may be 
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just as effective as long and serious consideration in many situations. Thus, simple 
heuristics are the second focus of this issue, and as they are the new decision-
makers in town we are primarily interested here in giving them a chance to prove 
their worth in the struggle between deep thought and quick choice. 

Of course, few would take the stated opposition of simple inference heuristics 
versus complex decision machines as an intractable either-or proposition. Rather, 
the authors in this issue see both approaches as potentially viable means for reach-
ing good decisions. The questions of interest lie more in determining when and 
where each approach is best used by minds, machines, or both working in combi-
nation. 

In this introductory essay, I will first briefly sketch some aspects of the history 
of the debate between simple and complex approaches to decision making, before 
presenting further arguments for studying simple heuristics, and an overview of 
four classes of heuristics that are discussed at points throughout the papers in this 
issue. I will then show how these papers address some of the most important themes 
from the simple versus complex decision-making debate, and indicate some of the 
problems that remain to be tackled. 

2. A Brief and Spotty History of Simple versus Complex Decision Making 

In the early 1800s, Pierre Simon Laplace imagined the form that the ultimate 
decision maker would take: 

Given . . .  an intelligence which could comprehend all the forces by which 
nature is animated and the respective situation of the beings who compose it 
— an intelligence sufficiently vast to submit these data to analysis . . .  nothing 
would be uncertain and the future as the past, would be present to its eyes. 
(Laplace, 1814/1951, p. 4). 

From the perspective of Laplace’s superintelligence, Nature is deterministic and 
certain, and proper decisions can be arrived at through sufficient calculation; but 
for humans, Nature is fickle and uncertain, and inferences must be made on the 
basis of unreliable cues. Although omniscience and certainty are not attainable for 
any real system, the spirit of Laplace’s superintelligence has survived nevertheless 
in the vision of unbounded rationality. This form of rationality is often defined 
by its adherence to the laws of logic and probability theory, and is the basis of 
the assumptions of proper economic behavior embodied in Homo economicus, as  
well as forming the foundations of the theories of planning and problem solving in 
traditional artificial intelligence and optimal (animal) behavior used in behavioral 
ecology (see Goodie et al., 1999). The lofty goals and strict standards of unbounded 
rationality, by their very definition, require the use of complex decision machines 
to process all available information, without regard for costs or limitations in time, 

 However, de Garis (1999), for one, sees sinister possibilities in just this sort of opposition, 
envisioning a battle in the not-too-distant future between those intent on building ever-more-complex 
decision machines and those who value more organic thought processes. 
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processing power, or knowledge. Again, real systems cannot feasibly live up to 
these requirements, but the goal of unbounded rationality implies the more complex 
decision processing, the better. 

To reach answers and make choices in a useful amount of time, real decision 
systems must employ limited information search, whereas models of unbounded 
rationality assume that search can go on indefinitely. In reasonable models, search 
must be limited because real decision makers have only a finite amount of time, 
knowledge, attention, or money to spend on a particular decision. Limited search 
requires a way to decide when to stop looking for information, that is, a stopping 
rule. One way to stop information search is to use a stopping rule that optimizes 
search with respect to the time, computation, money, and other resources being 
spent. More specifically, this ‘optimization under constraints’ vision of rationality 
holds that the decision maker should calculate the benefits and costs of searching 
for each further piece of information and stop search as soon as the costs outweigh 
the benefits (e.g., Sargent, 1993; Stigler, 1961). The rule ‘stop search when costs 
outweigh benefits’ sounds plausible at first glance. But a closer look reveals that 
optimization under constraints can require even more knowledge and computation 
than unbounded rationality, as all of the costs and benefits of all of the possible 
courses of searching or not searching for each further piece of information must be 
calculated (Vriend, 1996). 

Of course, few would argue that real humans have the time and knowledge 
necessary to perform the massive computations required of either of these forms of 
rationality. Rather, people often use shortcuts or heuristics — simple mechanisms 
that allow decisions to be arrived at quickly and with little mental effort. But the 
visions of unbounded rationality and optimization under constraints are usually 
presented as ideals that human or machine reasoning should aspire to. The upshot 
of these aspirations is that they make real human (and animal, and machine) reas-
oning look flawed and irrational in comparison — and they thus cast a pall over the 
usefulness and viability of the simple heuristics that people and animals employ. 

Much of the negative attitude toward reasoning based on simple heuristics 
emerged in psychology in the early 1970s, when the ‘heuristics-and-biases’ re-
search program launched by Tversky and Kahneman (1974) tainted the idea of 
simple mental mechanisms by attaching them to the value-laden ‘bias’ term in 
a single inseparable phrase. Within this program, heuristics were invoked as the 
explanation whenever errors — mainly deviations from the laws of probability 
— were found in human reasoning. Although Tversky and Kahneman repeatedly 
asserted that heuristics sometimes succeed and sometimes fail, their experimental 
results were typically interpreted as indicating some kind of fallacy stemming from 
the use of heuristics. 

Vindication of the usefulness of simple heuristics came a few years later from 
an unlikely source: robotics. Tired of the failures of the traditional ‘good old-
fashioned Al’ approach to get robots to move more than a few feet across a room in 
an hour, some researchers gave up on attempting to have their robots build complete 
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world-models and extensive plans following the dictums of standard theories of 
rationality. Instead, they tried building in hierarchies of simple rules to be followed 
(e.g., “go forward as long as path is not blocked”; “when path is blocked, back 
up and turn slightly”), and discovered that this approach yielded much faster and 
more robust behavior (Brooks, 1991; see also Braitenberg, 1984, for a discussion 
of how complexity is too readily attributed to the behavioral outcome of simple 
mechanisms, and Noble & Todd, in press, on the use of robot and simulation 
models to combat such false attributions when studying ‘imitative’ behaviors). 

At about the same time, evidence began to grow that humans could use simple 
decision mechanisms to good advantage. Experts were shown to base their judg-
ments on surprisingly few pieces of information (Shanteau, 1992). It was found that 
people could trade off the effort involved in making a choice against the accuracy 
of that choice, and choose a simple decision strategy that would achieve the desired 
balance (Payne et al., 1993). And simple heuristics that use only a single piece of 
information to make a choice between two alternatives were discovered to rival 
the performance of much more complex and information-hungry methods such as 
multiple linear regression (Gigerenzer and Goldstein, 1996a). Thus, rather than 
taking the use of heuristics as evidence that people can do little more than exhibit 
flawed instantiations of the perfect rationality they should aspire to, many now 
suspect that it may well be these aspirations that are flawed — reasoning, it seems, 
can be powerful and accurate without requiring unlimited time and knowledge. 

3. How to Study Simple Decision Mechanisms 

But just how can simple decision mechanisms make appropriate choices and infer-
ences? What forms of bounded rationality — as opposed to unbounded rationality 
or optimization under constraints — work effectively, and why? The ‘father’ of 
bounded rationality, Herbert Simon, viewed his conception as having two inter-
locking components: the limitations of the (human) mind, and the structure of the 
environments in which the mind operates (see Gigerenzer and Selten, in press, for 
recent work following on these ideas). The first component of his vision means 
that models of (human) judgment and decision making should be built on what 
we actually know about the mind’s capacities rather than on fictitious competen-
cies. Because of the mind’s limitations, humans “must use approximate methods 
to handle most tasks” (Simon, 1990, p. 6). These methods include recognition 
processes that largely obviate the need for further information search, heuristics 
that guide search and determine when it should end, and simple decision rules that 
make use of the information found. 

The second component of Simon’s view of bounded rationality, environmental 
structure, is of crucial importance because it can explain when and why simple 
heuristics perform well: if the structure of the heuristic is adapted to the structure 
of the information in the environment. Simon (1956) illustrated the importance of 
this component early on through an example of a hypothetical organism searching 



SPECIAL ISSUE INTRODUCTION 465 

for food in a particular environment; others have made similar points both before 
his work (e.g., Brunswik, 1943) and at various times since (e.g., Anderson, 1990), 
including the extreme statement only the environment need be studied, not the 
mechanisms of the mind (e.g., Gibson, 1979). But in general the second part of 
Simon’s (1956) paper title, “Rational choice and the structure of environments,” 
has been neglected in mainstream cognitive sciences (even by Simon himself — 
see Simon, 1987). 

To bring environmental structure back into the study of bounded rationality, we 
need a new focus on ecological rationality. Traditional definitions of rationality 
are concerned with maintaining internal order of beliefs and inferences. But real 
organisms spend most of their time dealing with the external disorder of their 
environment, trying the make the decisions that will allow them to survive and 
reproduce. To behave adaptively in the face of environmental challenges, organ-
isms must be able to make inferences that are fast, frugal, and accurate. These 
real-world requirements lead to a new conception that proper reasoning must be 
ecologically rational, arising from decision mechanisms that are matched (that is, 
adapted) to the particular structure of information in the environments in which 
they are applied. The study of ecological rationality thus involves analyzing the 
structure of environments, the structure of heuristics, and the match between them. 

We can now restate the questions beginning this section: How is ecological 
rationality possible? That is, how can fast and frugal heuristics work as well as they 
do, and escape the tradeoffs between different real-world criteria including speed 
and accuracy? The main reason for their success is that they make a tradeoff on 
another dimension: that of generality versus specificity. While internal criteria for 
the coherence of decisions are very general — logical consistency for instance can 
be applied to any domain — the correspondence criteria that measure a heuristic’s 
performance against the real world require much more domain-specific solutions. 
What works to make quick and accurate inferences in one domain may well not 
work in another (see Bullock & Todd, this issue, for a discussion). Thus, differ-
ent environments can have different specific fast and frugal heuristics that exploit 
their particular information structure to make adaptive decisions. But specificity 
can also be a danger: if a different heuristic were required for every slightly dif-
ferent decision-making environment, we would need an unworkable multitude of 
heuristics to reason with, and we would not be able to generalize to previously 
unencountered environments. Fast and frugal heuristics can avoid this trap by their 
very simplicity, which allows them to be robust in the face of environmental change 
and enables them to generalize well to new situations (see Martignon and Schmitt, 
this issue). 

Robustness goes hand in hand with speed, accuracy, and especially informa-
tion frugality. Simple heuristics can reduce overfitting (focusing too much on the 
specific details in a particular data set) by ignoring the noise inherent in many 
cues and looking instead for the ‘swamping forces’ reflected in the most important 
cues. Thus, simply using only one or a few of the most useful cues can automatic-
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ally yield robustness. Furthermore, important cues are likely to remain important. 
The informative relationships in the environment are likely to hold true when the 
environment changes. Because of this pattern, fast and frugal heuristics that pay at-
tention to systematic informative cues while overlooking more variable uninform-
ative cues can ride out environmental change without suffering much decrement in 
performance. Thus, simple heuristics and environmental structure can both work 
hand in hand to provide a realistic alternative to the ideal of optimization, whether 
unbounded or constrained. 

The research program proposed by Gigerenzer and colleagues (Gigerenzer et 
al., 1999) for studying the simple boundedly rational heuristics that humans and 
animals use involves (1) proposing and specifying computational models of can-
didate simple heuristics, (2) analyzing the environmental structures in which they 
perform well, (3) testing their performance in real-world environments, and (4) 
determining whether and when people really use these heuristics. The results of 
the investigatory stages 2 through 4 can be used to inform the initial theorizing 
of stage 1. The different stages of this research program rest on multiple methods, 
including theoretical modeling of heuristics, computer simulation of their perform-
ance, mathematical analysis of the fit between heuristics and specific environments, 
and laboratory experimentation. (When the goal is designing simple heuristics for 
artificial decision-making agents to use, rather than investigating what humans and 
animals actually use, the fourth step of this process can be omitted.) 

3.1. BUILDING SIMPLE HEURISTICS FROM SIMPLE BUILDING BLOCKS 

To study particular heuristics in detail, computational models must be developed 
that specify the precise steps of information gathering and processing that are 
involved in generating a decision, allowing the heuristic to be instantiated as a 
computer program. In particular, simple fast and frugal heuristics are made up of 
building blocks that guide search for alternatives, information, or both, stop that 
search, and make a decision. 

3.1.1. Building Blocks for Guiding Search 

Decisions must be made between alternatives, and based on information about 
those alternatives. In different situations, those alternatives and pieces of informa-
tion may need to be found through active search. The building blocks for guiding 
search, whether across alternatives or information, are what give search its direc-
tion (if it has one). For instance, search for cues can be simply random, or in order 
of some precomputed criterion related to their usefulness, or based on a recol-
lection about which cues worked previously when making the same decision (see 
Section 4.2 below on one-reason decision mechanisms). Search for alternatives can 
similarly be random or ordered. Fast and frugal search-guiding principles do not 
use extensive computations or knowledge to figure out where to look next. 
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3.1.2. Building Blocks for Stopping Search 

To respect the temporal limitations of the human mind (or that of any realistic 
decision-making agent), search for alternatives or information must be terminated 
at some point. Moreover, owing to the computational limitations of boundedly 
rational agents, the method for determining when to stop search should not be 
overly complicated. For example, one simple stopping rule is to cease searching for 
information and make a decision as soon as the first cue or reason that favors one al-
ternative is found (as embodied in one-reason decision making — see Section 4.2). 
This and other cue-based stopping rules do not need to compute an optimal cost– 
benefit trade off as in optimization under constraints; in fact, they need not compute 
any costs or benefits at all. For search among alternatives, simple aspiration-level 
stopping rules can be used (see Section 4.4 below on satisficing search). 

3.1.3. Building Blocks for Decision Making 

Once search has been guided to find the appropriate alternatives or information and 
then been stopped, a final type of building block can be called upon to make the 
decision or inference based on the results of the search. These components can also 
be very simple and computationally bounded. For instance, a decision or inference 
can be based on only one cue or reason, whatever the total number of cues found 
during search (see Sections 4.1 on ignorance-based and 4.2 on one-reason decision 
mechanisms). Such single-cue decision making does not need to weight or combine 
cues, and so no common currency between cues need be determined. Decisions can 
also be made through a simple elimination process, in which alternatives are thrown 
out by successive cues until only one final choice remains (see Section 4.3 below 
on elimination heuristics). 

These building blocks can be put together to form a variety of fast and frugal 
heuristics. Given that the mind is a biological rather than a purely logical entity, 
formed through a process of successive accrual, borrowing, and refinement of com-
ponents, it seems reasonable to assume that new heuristics are built from the parts 
of old ones, rather than from scratch (Pinker, 1998). Following this assumption, two 
main methods can be used to construct computational models of fast and frugal 
heuristics: combining building blocks and nesting existing heuristics. Building 
blocks can be combined in multiple ways, though not arbitrarily: for instance, a 
fast and frugal heuristic for two-alternative choice that stops information search at 
the first cue on which the alternatives differ must also use a decision principle based 
on one-reason decision making. Whole fast and frugal heuristics can themselves be 
combined by nesting one inside another. As an example, the recognition heuristic 
(see Section 4.1) works on the basis of an elementary cognitive capacity, recogni-
tion memory, but it can also serve as the first step of one-reason decision heuristics 
that draw on other capacities, such as recall memory. Recognition memory de-
velops earlier than recall memory both ontogenetically and evolutionarily, and the 
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nesting of heuristics can similarly be seen as analogous to the addition of a new 
adaptation on top of an existing one. 

3.2. FILLING THE MIND ’ S ADAPTIVE TOOLBOX 

The various simple heuristics that are built up from building blocks and other 
nested heuristics can all be thought of as making up part of the adaptive tool-
box: the collection of specialized cognitive mechanisms that evolution has built 
into the human mind for specific domains of inference and reasoning (Gigerenzer 
and Todd, 1999; see also Cosmides and Tooby, 1992; Payne et al., 1993). The ad-
aptive toolbox contains all manner of psychological (as opposed to morphological 
or physiological) adaptations. These include so-called ‘lower-order’ perceptual and 
memory processes which can be fairly automatic, such as depth perception, audit-
ory scene analysis, and face recognition, as well as ‘higher-order’ processes that are 
based on the ‘lower’ processes and can be at least partly accessible to conscious-
ness. Within the class of higher-order mental processes fall fast and frugal heurist-
ics for decision making, which themselves often call upon lower-order processes 
of cue perception and memory. 

Lower-order perceptual and memory processes such as face and voice recogni-
tion are complex and difficult to unravel, in part because they make use of massively 
parallel computations. No one has yet managed to build a machine that recognizes 
faces as well as a 2-year-old child. Now consider a higher-order decision mech-
anism that makes inferences based on these processes, the recognition heuristic 
mentioned earlier (see also Section 4.1). This fast and frugal heuristic uses recog-
nition to make rapid inferences about unknown aspects of the world: For instance, 
food whose taste one recognizes is probably safer than unrecognized food, and 
a university whose name one has heard of probably provides a more prestigious 
education than one whose name is unfamiliar. Although the mechanisms of re-
cognition memory may be intricate and complex, the recognition heuristic can be 
described as an algorithm just a few steps long. We do not need to know precisely 
how recognition memory works to describe a heuristic that relies on recognition. 
This example illustrates an apparently paradoxical thesis: higher-order cognitive 
mechanisms can often be modeled by simpler algorithms than can lower-order 
mechanisms. 

This thesis is not new, having been proposed in various forms over the past 
century (e.g., by proponents of the Würzburg school of psychology in the early 
1900s — see Kusch, 1999). But it is central to the discussion of when we should 
postulate simple versus complex decision mechanisms in the adaptive toolbox. 
In particular, it offers us a way to evade the withering firepower of Morgan’s 
Canon, the dictum that we must always prefer lower psychological processes as 
explanations over higher psychological processes. Morgan’s Canon would have 
us explain any given observed choice behavior as the outcome of the lowest pos-
sible psychological mechanism, no matter how complex that mechanism might 
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be. But armed only with Occam’s Razor (see Forster, this issue, and Martignon 
and Schmitt, this issue), a preference for simplicity can overcome the barrage of 
Morgan’s Canon and allow us to propose instead higher-order decision processes 
achieved via simple heuristics. (Fodor’s Pop Gun, insisting that we always prefer 
a higher-order mechanism as an explanation over a lower-order one, can bring 
us to the same outcome — see Fodor, 1999; but as Fodor himself says, there is 
no principled reason to prefer his Pop Gun over Morgan’s Canon, or vice versa, 
whereas there are many arguments for using Occam’s Razor, as discussed in some 
of the papers in this issue.) We now tum to an overview of some of the kinds of 
high-order simple heuristics that can fill the mind’s adaptive toolbox. 

4. Four Families of Simple Heuristics 

The decision-making building blocks just described can be put together to form 
classes or families of heuristics whose members are related by the particular search, 
stop, or decision rules they use. In this section I briefly introduce four such fam-
ilies of heuristics (out of many possible) covering decision situations that vary in 
the amount of information available, the number of options to choose between, 
and the distribution of options in time or space. These heuristics can be seen as 
models of the behavior of both living organisms and artificial systems. From a 
descriptive standpoint, they are intended to capture how real minds make decisions 
under constraints of limited time and knowledge. From an engineering standpoint, 
these heuristics suggest ways to build artificially intelligent systems — artificial 
decision-makers that are not paralyzed by the need for vast amounts of knowledge 
or for extensive computational power. 

4.1. IGNORANCE-BASED DECISION MECHANISMS 

One of the simplest forms of decision that can be made is to select one option from 
two possibilities, according to some criterion on which the two can be compared. 
What simple cognitive mechanisms can be used to make this type of decision? 
This will depend on the amount and type of information that is available in the 
environment. If the only information available is whether or not each possibility 
has ever been encountered before, then the decision maker can do little better than 
rely on his or her own partial ignorance, choosing either recognized options or 
unrecognized ones. For heuristics applicable to such situations, their information 
search building block merely specifies that recognition should be assessed for 
the alternatives being compared; the search stopping building block limits con-
sideration to only this recognition information; and the decision building block 
indicates exactly how recognition information determines the final choice. This 
‘ignorance-based reasoning’ is embodied in the recognition heuristic (Gigerenzer 
and Goldstein, 1996a; Goldstein and Gigerenzer, 1999), which uses the following 
decision rule: when choosing between two objects (according to some criterion), 
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if one is recognized and the other is not, then select the former. For instance, 
Norway rats have evolved to behave according to a rule of this type, preferring 
to eat things they recognize through past experience with other rats (e.g., items 
they have smelled on the breath of others) over novel items (Galef, 1987). 

Following the recognition heuristic will yield correct responses more often than 
would random choice in those decision environments in which exposure to dif-
ferent possibilities is positively correlated with their ranking along the decision 
criterion being used. Thus, the rats’ food preference copying presumably evolved 
because the things that other rats have eaten (i.e., recognized items) are more 
often palatable than are random (unrecognized) items sampled from the environ-
ment. Such useable correlations are likely to be present for species with social 
information exchange where important environmental objects are communicated 
and unimportant ones are ignored, as well as for species in environments where 
important environmental objects are simply encountered more often or earlier in 
life. 

4.2. ONE-REASON DECISION MECHANISMS 

When multiple pieces of information are available (beyond only recognition), a 
second class of simple heuristics becomes applicable: those that rely on just a 
single cue to make a decision. Imagine that we again have two objects to compare 
on some criterion, and several cues that could be used to assess each object on the 
criterion. A one-reason decision heuristic could then work as follows: (1) select a 
cue dimension using some search building block and look for the corresponding 
cue values of each option; (2) compare the two options on their values for that 
cue dimension; (3) if they differ, then stop (this is the stop-search building block), 
and choose the option with the cue value indicating a greater value on the choice 
criterion (the decision building block); (4) if the options do not differ, then return 
to the beginning of this loop (step 1) to look for another cue dimension. Such a 
heuristic will often have to look up more than one cue before making a decision, 
but the simple stopping rule (in step 3) ensures that as few cues as possible will 
be sought, minimizing the time needed for information search. Furthermore, ul-
timately only a single cue will be used to determine the choice, minimizing the 
amount of computation that must be done. 

To finish specifying a particular simple heuristic of this type, we must also 
determine exactly how cue dimensions are ‘looked for’ in step 1 — that is, we 
must pick a specific information search building block. For instance, the Take The 
Best heuristic searches for cues in the order of their ecological validity — that is, 
their correlation with the decision criterion, while the Minimalist heuristic selects 
cues in a random order (Gigerenzer and Goldstein, 1996a, 1999; see Martignon and 
Schmitt, this issue, and Bullock and Todd, this issue, for discussions and compar-
ison with other decision mechanisms). Again, both stop their information search as 
soon as a cue is found that allows a decision to be made between the two options. 
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Despite (or often because of) their simplicity and disregard for most of the 
available information, these two fast and frugal heuristics can make very accu-
rate choices. A set of 20 environments was collected to test the performance of 
these heuristics, varying in number of objects and number of available cues, and 
ranging in content from the population sizes of German cities to fish fertility to 
high-school dropout rates (Czerlinski et al., 1999). The decision accuracies of 
Take The Best and Minimalist were compared with those of two more traditional 
decision mechanisms that use all available information and combine it in more 
or less sophisticated ways: multiple regression, which weights and sums all cues 
in an optimal linear fashion, and Dawes’s Rule, which counts up the positive and 
negative cues and subtracts the latter from the former. The two fast and frugal 
heuristics always came close to, and often exceeded, the performance of the tra-
ditional algorithms when all were tested on the data they were trained on (data 
fitting). This surprising performance on the part of Take The Best and Minimalist 
was achieved even though they only looked through a third of the cues on average 
(and only decided using one of them), while multiple regression and Dawes’s Rule 
used them all. The advantages of simplicity grew in the more important test of 
generalization performance, where the decision mechanisms were assessed on a 
portion of each data set that they had not seen during training; in that case, Take The 
Best outperformed all three other algorithms by a clear margin. Thus, making good 
decisions need not rely on the standard rational approach of collecting all available 
information and combining it according to the relative importance of each cue — 
simply betting on one good reason, even one selected at random, can provide a 
competitive level of accuracy in a variety of environments. 

4.3. ELIMINATION HEURISTICS FOR MULTIPLE-OPTION CHOICES 

These results on the efficacy of simple heuristics in structured environments are not 
restricted to decisions made between two objects. More generally, fast and frugal 
heuristics can also be found that use as few cues as possible to categorize objects. 
Categorization by Elimination (Berretty et al., 1997), similar to Tversky’s (1972) 
Elimination by Aspects model of preference-based choices upon which it is based, 
uses one cue after another in a particular order to narrow down the set of remaining 
possible categories until only a single one remains. When cues are ordered in 
terms of their usefulness in predicting the environment, accurate categorization 
can be achieved using only the first few of the available cues. Even more accurate 
performance can arise when categorization is based on only a single cue through 
the use of a fine-grained cue-value-to-category map (Holte, 1993), provided the 
decision maker is able to make the tradeoff required between extra memory and 
increased accuracy. 

Estimation can also be performed accurately by a simple algorithm that ex-
ploits environments with a particular structure. The QuickEst heuristic (Hertwig 
et al., 1999) is designed to estimate the values of objects along some criterion 
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while using as little information as possible. To estimate the criterion value of a 
particular object, the heuristic looks through the available cues or features in a 
criterion-determined order, until it comes to the first one that the object does not 
possess. At this point QuickEst stops searching for any further information and 
produces an estimate based on criterion values associated with the absence of the 
last cue. QuickEst proves to be fast and frugal, as well as accurate, in environments 
characterized by a distribution of criterion values in which small values are com-
mon and big values are rare (a so-called ‘J-shaped’ distribution). Such distributions 
characterize a variety of naturally occurring phenomena including many formed by 
accretionary growth (e.g. cities, some businesses, etc.). 

4.4. SATISFICING HEURISTICS FOR SEQUENTIAL CHOICES 

The heuristics presented so far assume that all of the possible options to be chosen 
between are presently available to the decision maker. But a different strategy is 
called for when alternatives (as opposed to information about the alternatives) 
take time to find, appearing sequentially over an extended period or spatial re-
gion. In this type of choice task, a fast and frugal reasoner need not (only) limit 
information search, but (also) must have a stopping rule for ending the search for 
alternatives themselves. One instance of this type of problem is the challenge that 
faces individuals searching for a mate from a stream of potential candidates met 
at different points in time; another instance is the search for amenable habitats in 
which to settle. Here, Herbert Simon’s (1955, 1990) notion of a satisficing heuristic 
is applicable: An aspiration level is set for the selection criterion being used, and 
the search for alternatives is stopped as soon as the aspiration is met. Simple mech-
anisms can be used to set the aspiration level in the first place, such as checking the 
first few alternatives and taking the best value seen in that set as the level to beat 
in further search (Todd, 1997; Todd and Miller, 1999; see Goodrich, Stirling and 
Boer, this issue, for more on satisficing approaches). The trick here is to balance the 
desire for a short, fast and frugal search on the one hand (achieved by checking as 
few initial alternatives as possible), against the need for enough information about 
the potential alternatives to set an appropriate aspiration level on the other hand 
(achieved by checking as many initial alternatives as possible). 

5. Extending the Study of Simple Heuristics 

5.1. EXTENSIONS PRESENTED IN THIS ISSUE 

The classes of simple heuristics just described represent some of the initial land-
marks that have been explored in the study of simple inference heuristics in com-
parison with complex decision machines. The papers in this special issue of Minds 
and Machines extend this exploration, focusing on the importance of environment 
structure, the way that simplicity can lead to robustness, and how simple strategies 
can do useful work. First, Terry Connolly discusses the kinds of environments 
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and tasks in which simple ‘hedge-trimming’ decision strategies that act quickly on 
the basis of little information will be more appropriate than complex ‘tree-felling’ 
strategies that gather masses of evidence and ponder it thoroughly before deciding. 
When information is costly or difficult to obtain and incremental actions can make 
useful progress, the former approach is called for; when decisions and actions 
have an ‘all-or-nothing’ character and their outcomes are crucial and irreversible, 
it makes sense to fell the tree carefully. 

Seth Bullock and Peter Todd continue this investigation of the impact of de-
cision importance or significance, as well as of decision prevalence or frequency, 
on the kinds of choice mechanisms that fare better or worse in different envir-
onments. When the frequency structure of an environment is skewed — making 
some choices confront a decision-maker much more often than others — certain 
heuristics show a particular sensitivity to this structure, and hence can exploit the 
environment for better performance. By skewing an environment’s significance 
structure — making some decisions much more important than others, for ex-
ample giving some wrong choices lethal consequences — more complex decision 
strategies, akin to Connolly’s tree-felling approaches, begin to have an advantage. 

In his paper on how simple mechanisms could ever fit the environment struc-
tures of a complex world, Malcolm Forster argues that this is only possible because 
a degree of complexity is hidden ‘under the hood’ of the simple mechanisms. The 
structure of any given simple mechanism must have built into it some assumptions 
about the structure of the problems to which that mechanism will be applied, mak-
ing it domain-specific to some extent. Making the wrong assumptions can seriously 
hinder the performance of an algorithm; but building in the right structure can yield 
simple mechanisms that generalize robustly to decisions across their particular 
domain. 

This robustness from simplicity theme is taken up further by Laura Martignon 
and Michael Schmitt. They show how even a simple task — comparing two objects 
on the basis of a set of binary cues — can be tackled by a variety of decision 
mechanisms, including the one-reason heuristics described earlier, decision trees, 
Bayesian networks, and estimation algorithms. Within each of these approaches, 
a complex or optimal strategy can be compared with a simple ‘fast and frugal’ 
mechanism. Martignon and Schmitt demonstrate that the performance of the simple 
mechanisms typically approaches, and can often exceed, that of the more complex 
strategies, particularly when robustly generalizing to new data. 

Kathryn Laskey, Bruce D’Ambrosio, Tod Levitt, and Suzanne Mahoney present 
the flip side of Forster’s position on simplicity built on complexity, arguing that 
complex decision mechanisms can only work if grounded in simple reactive in-
ference processes. They present a complex decision machine that they have built 
to help military commanders assess the overwhelming masses of information that 
flood in from battlegrounds; this system relies crucially on the initial use of simple 
quick inferences to distill that flood. Thus, simple heuristics enable complex in-
formation processing machines to produce overall assessments that are once again 
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simple, in a form most useful for the minds of the people making the ultimate 
decisions. 

Finally, Michael Goodrich, Wynn Stirling, and Erwin Boer consider how a 
decision-making agent can, at a higher meta-level, choose between available simple 
and complex decision strategies. The idea of satisficing described earlier can be 
applied to such situations, making meta-choices that resolve the tradeoffs between 
costs and benefits of different mechanisms without the meta-level processing itself 
becoming too complex. This approach is demonstrated in a setting in which human 
drivers must decide when to take over control of their moving vehicle from an 
autonomous speed-regulating device. Thus, Goodrich, Stirling, and Boer show 
another way in which simple heuristics and complex strategies, as well as the 
human minds and artificial machines in which they are usually embodied, can work 
together effectively. 

5.2. FURTHER ADVANCES 

Beyond the initial landmarks and the regions around them explored in this issue, 
there are of course many areas still wide open for exploration in the territorial 
dispute between simple inference heuristics and complex decision machines. After 
all, much of this territory has only recently been opened up. Each of the papers 
in this issue indicates profitable directions for advancing on current work; here I 
summarize a few of the most pressing topics, clustered into three main questions. 

5.2.1. When are Simple Heuristics or Complex Mechanisms Appropriate? 

Researchers have begun to identify particular simple heuristics for a variety of 
restricted decision tasks, but how far ‘up the cognitive ladder’ of higher-order 
processes can this search be extended? For example, recent work in behavioral 
ecology and behavioral robotics points toward simple possibilities for tasks that 
are extended in time, such as planning or navigation (Goodie et al., 1999). What 
other forms of reasoning can heuristics be applied to? Are there features of environ-
ment structure that determine when simple or complex mechanisms are needed and 
which particular mechanism is best suited? We do not have yet a well-developed 
language for describing those aspects of environment structure, whether physical or 
social, that determine the usefulness and shape the design of decision heuristics. In 
studying this aspect of ecological rationality we should turn for inspiration to other 
fields, including ecology and statistics, that have analyzed environment structure 
from different perspectives. 

5.2.2. How is the Appropriate Simple Heuristic or Complex Algorithm Selected? 

That is, when more than one decision mechanism is applicable in a given situation, 
how can a choice between them be made? Must the adaptive toolbox be equipped 
with an adaptive mechanic who performs this selection? Will the choice be made on 



SPECIAL ISSUE INTRODUCTION 475 

the basis of the performance of the various candidate mechanisms and the demands 
of the current situation (as proposed by Payne et al., 1993; see also Goodrich et 
al., this issue), and if so, what performance criteria (accuracy, speed, frugality, 
robustness, logical coherence, etc.) are to be used? Or can heuristics and other 
mechanisms be invoked in a more automatic, simple fashion? The appeal of a fast 
and frugal approach to cognition will certainly be decreased if this is not the case. 

5.2.3. Where do Simple Heuristics (and Other Decision Mechanisms) Come 
From? 

How can the processes of learning and evolution interact to create the particular 
heuristics that humans and animals employ? Are the outlines of specific heuristics 
evolved, and the particular cues used in particular environments then subject to 
learning? When is individual learning used, and when are new decision mech-
anisms (or new cues) picked up through social information exchange, including 
culture? How can we as researchers come up with appropriate heuristics to investig-
ate in humans and animals (the first step in the four-step research process described 
in Section 3)? Finally, when we are designing artificial decision-making systems, 
what engineering processes can we use to find the most useful heuristics or com-
plex mechanisms — artificial evolution, machine learning, Bayesian approaches, 
or some other methods? 

Tackling these questions will give us further insights into the relationships be-
tween simple inference heuristics and complex decision mechanisms. In the mean-
time, as the papers in this issue attest, we are already converging on an image 
of simplicity built atop complex underpinnings, complexity emerging from the 
interactions of simple mechanisms, and virtuous deep thought working hand in 
hand with fast and frugal snap judgments to yield the decisions that shape our 
paths. 
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