
GAGE: Geometry Preserving Attributed Graph Embeddings
Charilaos I. Kanatsoulis

University of Pennsylvania

Philadelphia, Pennsylvania, USA

kanac@seas.upenn.edu

Nicholas D. Sidiropoulos

University of Virginia

Charlottesville, Virginia, USA

nikos@virginia.edu

ABSTRACT
Node embedding is the task of extracting concise and informative

representations of certain entities that are connected in a network.

Various real-world networks include information about both node

connectivity and certain node attributes, in the form of features or

time-series data. Modern representation learning techniques em-

ploy both the connectivity and attribute information of the nodes

to produce embeddings in an unsupervised manner. In this context,

deriving embeddings that preserve the geometry of the network

and the attribute vectors would be highly desirable, as they would

reflect both the topological neighborhood structure and proximity

in feature space. While this is fairly straightforward to maintain

when only observing the connectivity or attribute information of

the network, preserving the geometry of both types of informa-

tion is challenging. A novel tensor factorization approach for node

embedding in attributed networks is proposed in this paper, that

preserves the distances of both the connections and the attributes.

Furthermore, an effective and lightweight algorithm is developed

to tackle the learning task and judicious experiments with multiple

state-of-the-art baselines suggest that the proposed algorithm offers

significant performance improvements in downstream tasks.

CCS CONCEPTS
• Information systems → Social networks; Web mining; •
Computing methodologies → Learning latent representa-
tions; • Networks→ Network algorithms.

KEYWORDS
networks, graphs, tensors, representation learning, embedding,

multi dimensional scaling

ACM Reference Format:
Charilaos I. Kanatsoulis and Nicholas D. Sidiropoulos. 2022. GAGE: Geome-

try Preserving Attributed Graph Embeddings. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining (WSDM ’22),
February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3488560.3498467

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498467

1 INTRODUCTION
Network science studies the behavior of entities, belonging to one or

more communities, via observing their mutual interactions [3]. Net-

works and network science have attracted considerable attention

in science and engineering, since they offer an elegant abstraction

of various physical, social, and engineered systems – and effective

tools to analyze them [12, 25]. Networks are nowadays ubiquitous

in a plethora of science and engineering disciplines, including social,

communication, and biological networks, to name a few.

Networks are usually represented by graphs, which are infor-

mative abstractions and model the interactions in the system. In

particular, graph representations encode the connectivity infor-

mation of different entities (nodes) through a set of edges. The

connectivity information in a network is important and describes

each node in the network with respect to the rest of the nodes.

In real world networks, the entities are not only defined by their

connectivity with other entities, but can also be described by a set

of measurements or attributes, which offer a node characterisation

at an individual level, and are usually very informative. Although

graphs offer an elegant representation of the network entities, in-

dividual representations of the entities is also required that is not

necessarily described by relations with respect to subsets of the

community. Furthermore, when attributes are available for each

node, which is often the case in practice, it is essential to combine

both connectivity and attribute information in a single, universal

representation, that encapsulates as much information as possible.

Moreover, a variety of interesting networks involve millions of

nodes, which makes graph representation of nodes highly imprac-

tical for certain tasks.

The aforementioned challenges underscore the need for concise

and informative representation of network nodes that is conducive

for exploratory analysis, as well as downstream applications. This

has motivated a considerable body of research on embedding graph

nodes in a low-dimensional vector space, using graph and attribute

information in an unsupervised manner. The task is also known

as unsupervised node or graph representation learning. The objec-

tive of unsupervised node embedding is twofold. On the one hand,

the embeddings should capture the maximum amount of knowl-

edge present in the graph and attributes so that information loss is

avoided. Towards this end, a key to successful node embeddings

is to be able to preserve the geometry of the network, defined by

proximity in both the connectivity and the attributes of the nodes.

On the other hand the embedding should be able to boost the

performance of various downstream network tasks, such as node

classification, link prediction, and community detection, to name a

few. Concise node representations produced by embedding algo-

rithms can significantly benefit feature-based tools such as logistic

regression, support vector machines, and even neural networks –

especially when only limited training data are accessible.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

439

https://doi.org/10.1145/3488560.3498467
https://doi.org/10.1145/3488560.3498467


A plethora of methods have been proposed to perform node em-

bedding. Early works approached the node representation learning

task using only the connectivity information of the network. A

number of them focused on properly defining a similarity measure

on the connectivity information and performing matrix factoriza-

tion on it [1, 4, 5, 26, 29, 32, 34, 36, 39]. The work in [20] performs

coupled tensor-matrix factorization to learn representations in the

context of knowledge graphs. Random walks have also been suc-

cessfully employed to generate node embeddings, e.g., [16, 27].

More recently, the focus of research has shifted towards generating

embeddings for attributed networks. The work in [39] generalizes

deepwalk [27] to the case where attributes are available, while [19]

performs label-informed attributed node representation learning

in a semi-supervised setting. Neural networks for network science

tasks have also gained significant attention lately. In particular,

graph convolutional neural networks and graph auto-encoders are

very popular for attributed node embedding [6, 10, 13, 21, 22, 37, 38].

Works have also been proposed to perform inductive embedding,

e.g., [17, 37] where a graph convolutional network is trained with

multiple graphs. Finally, the work in [2] employs a tensor decompo-

sition model and jointly factors the conventional adjacency along

with a 𝑘-nearest neighbor matrix of the attributes.

Our work is motivated by the following question: Can we produce
node embeddings such that we provably preserve the geometry of 1) the
distances associated with the connectivity information of the network,
and 2) the distances associated with the attributed information of
the network, in an unsupervised manner? This is a well motivated

problem, since maintaining the network geometry is a fundamental

objective of representation learning, and, as we will show in this

paper, doing so significantly improves the performance of several

downstream tasks. The problem can be informally stated as follows:

• Given: the connectivity and attribute information of net-

work nodes.

• Produce: Low dimensional node representations that pre-

serve both the connectivity and attribute geometry.

We propose Geometry-preserving Attributed Graph Embedding
(GAGE) – a principled approach to extract node embeddings in an

unsupervised fashion. GAGE enjoys several favorable properties.

• By design, the produced embeddings preserve node geom-

etry, as inferred from both the node adjacency matrix and

the node attributes.

• The node embeddings are unique and thus permutation in-

variant, meaning that any reordering of the nodes in the

adjacency representation yield the same embeddings.

• The approach is applicable to both undirected and directed

networks.

• The proposed approach is flexible and does not require con-

nectivity and attribute information for every node; embed-

dings can be produced for nodes with partially/completely

missing connectivity or attribute information (but not both).

• The proposed algorithm is lightweight and scalable – it can

efficiently handle large networks.

To assess the performance of GAGE, we used three real attributed
network benchmarks. Experimental results show that GAGE shows

great promise in both tasks, markedly outperforming the baselines.

The contributions of our work can be summarized as follows:

• Novel problem formulation: Previous work in this area

hasn’t formalized the intuitive requirement that the embed-

ding should be capable of (approximately) reproducing the

distances associated with the connectivity and attribute in-

formation.

• Analysis:We show that by leveraging the favorable proper-

ties of tensor factorization and multi dimensional scaling the

proposed embedding can (approximately) reproduce both

the connectivity and attribute distances.

• Algorithm:We propose a novel tensor factorization algo-

rithm to perform unsupervised embedding task. The algo-

rithm exploits the special structure of the tensor, is fast and

scalable for big networks.

• Experimental verification: The proposed approach is as-

sessed under node classification and link prediction settings

and exhibits very promising results in both tasks.

Reproducibility: The datasets we use are all publicly available;

Code and data can be found in the following link
1
.

Notation: Our notation is summarized in Table 1.

Table 1: Overview of notation.

V ≜ Set of nodes

E ≜ Set of edges

𝑺G ≜ 𝑁 × 𝑁 adjacency matrix

A ≜ 𝑁 × 𝑑 matrix of node attributes

E ≜ 𝑁 × 𝐹 matrix of embeddings

e𝑖 ≜ 𝐹 × 1 mbedding vector of node 𝑣𝑖

𝑎 ≜ scalar

𝒂 ≜ vector

𝑨 ≜ matrix

𝑨 ≜ tensor

𝑨𝑘 ≜ 𝑘-th frontal slab of tensor 𝑨
𝑨𝑇 ≜ transpose of matrix 𝑨
∥𝑨∥𝐹 ≜ Frobenius norm of matrix 𝑨
⊗ ≜ Kronecker product of two matrices

⊙ ≜ Khatri-Rao (columnwise Kronecker) product

⌊𝑥 ⌋ ≜ largest integer that is less than or equal to 𝑥

𝑰 ≜ Identity matrix

1 ≜ vector of ones

2 PRELIMINARIES
Before moving into the core of the paper, we briefly discuss some

tensor algebra preliminaries to facilitate the exposition. The reader

is referred to [23, 33] for further background on tensors.

A third-order tensor 𝑿 ∈ R𝐼×𝐽 ×𝐾 is a three-way with elements

𝑿 (𝑖, 𝑗, 𝑘). It comprises three modes – columns 𝑿 (𝑖, :, 𝑘) (: stands
for {1, · · · , end}, where end = 𝐽 here), rows 𝑿 (:, 𝑗, 𝑘), and fibers

𝑿 (𝑖, 𝑗, :); and three types of slabs – horizontal 𝑿 (𝑖, :, :), vertical
𝑿 (:, 𝑗, :) and frontal 𝑿 (:, :, 𝑘). A rank-one tensor 𝒁 ∈ R𝐼×𝐽 ×𝐾 is the

outer product of three vectors, 𝒂 ∈ R𝐼 , 𝒃 ∈ R𝐽 , 𝒄 ∈ R𝐾 , denoted as
𝒁 = 𝒂 ◦ 𝒃 ◦ 𝒄 , where ◦ is the outer product operator.

Any third order tensor can be decomposed into a sum of three

way outer products (rank one tensors), i.e.

𝑿 (𝑖, 𝑗, 𝑘) =
𝐹∑︁
𝑓 =1

𝑨(𝑖, 𝑓 )𝑩( 𝑗, 𝑓 )𝑪 (𝑘, 𝑓 ), (1)

1
https://github.com/marhar19/GAGE-Geometry-Preserving-Attributed-Graph-

Embeddings

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

440



where 𝑨 = [𝒂1, . . . , 𝒂𝐹 ] ∈ R𝐼×𝐹 , 𝑩 = [𝒃1, . . . , 𝒃𝐹 ] ∈ R𝐽 ×𝐹 , 𝑪 =

[𝒄1, . . . , 𝒄𝐹 ] ∈ R𝐾×𝐹 are the low-rank matrix factors. The mini-

mum 𝐹 needed to synthesize 𝑿 , is the rank of tensor 𝑿 and the

corresponding decomposition is known as the canonical polyadic
decomposition (CPD) of 𝑿 [18], denoted as 𝑿 = ⟦𝑨,𝑩, 𝑪⟧. A strik-

ing property, that differentiates tensors from matrices, is that the

CPD of a tensor is essentially unique under mild conditions, even

if the rank is higher than the dimensions. A generic result on the

uniqueness of the CPD follows.

Theorem 1. [8, p. 1019-1021] Let 𝑿 = ⟦𝑨,𝑩, 𝑪⟧ with 𝑨 : 𝐼 × 𝐹 ,
𝑩 : 𝐽 × 𝐹 , and 𝑪 : 𝐾 × 𝐹 . Assume that 𝑨, 𝑩 and 𝑪 are drawn
from an absolutely continuous joint distribution with respect to the
Lebesgue measure in R(𝐼+𝐽 +𝐾)𝐹 . Also assume 𝐼 ≥ 𝐽 ≥ 𝐾 without loss
of generality. If 𝐹 ≤ 2

⌊log
2
𝐽 ⌋+⌊log

2
𝐾 ⌋−2, then the decomposition of 𝑿

in terms of 𝑨,𝑩, and 𝑪 is essentially unique, almost surely.

Here, essential uniqueness means that if
˜𝑨, 𝑩̃, ˜𝑪 also satisfy 𝑿 =

⟦ ˜𝑨, 𝑩̃, ˜𝑪⟧, then 𝑨 = ˜𝑨𝚷𝚲1, 𝑩 = 𝑩̃𝚷𝚲2, and 𝑪 = ˜𝑪𝚷𝚲3, where 𝚷

is a permutation matrix and 𝚲𝑖 is a full rank diagonal matrix such

that 𝚲1𝚲2𝚲3 = 𝑰 .
A tensor can be represented in a matrix form using the matri-

cization operation. There are three common ways to matricize (or

unfold) a third-order tensor, by stacking columns, rows, or fibers

of the tensor to form a matrix. To be more precise let:

𝑿 (:, :, 𝑘) = 𝑿𝑘 ∈ R𝐼×𝐽 , (2)

where 𝑿𝑘 are the frontal slabs of tensor 𝑿 and in the context of

this paper they model adjacency matrices, powers of the adjacency,

node attributes or attribute similarity matrices. Then the mode-1,

mode-2 and mode-3 unfoldings of 𝑿 can be cast as:

𝑿 (1) =
[
𝑿1,𝑿2, . . . ,𝑿𝐾

]𝑇
= (𝑪 ⊙ 𝑩)𝑨𝑇 ∈ R𝐽 𝐾×𝐼 , (3)

𝑿 (2) =
[
𝑿𝑇
1
,𝑿𝑇

2
, . . . ,𝑿𝑇

𝐾

]𝑇
= (𝑪 ⊙ 𝑨)𝑩𝑇 ∈ R𝐼𝐾×𝐽 , (4)

𝑿 (3) =


𝑿1 (:, 1),𝑿2 (:, 1), · · · ,𝑿𝐾 (:, 1)

.

.

.

𝑿1 (:, 𝐽 ),𝑿2 (:, 𝐽 ), · · · ,𝑿𝐾 (:, 𝐽 )

 = (𝑩 ⊙ 𝑨)𝑪𝑇 ∈ R𝐼 𝐽 ×𝐾 .

(5)

3 PROBLEM STATEMENT
We begin the discussion with the definition of node embedding. Let

G := {V, E} be a directed or undirected graph, withV being the

set of 𝑁 = |V| nodes, and E ⊆ V ×V being the set of edges. We

are also given a set of attributesA for each node. Node embedding

aims to map each node to a vector in 𝐹−dimensional Euclidean

space. Formally, the node embedding task seeks for a function

𝑓 (·) : G,A → R𝑁×𝐹 , where 𝐹 ≪ 𝑁 . The node embeddings can be

represented by matrix 𝑬 = [𝒆1, 𝒆2, · · · , 𝒆𝑁 ]𝑇 , where each row that

contains the 𝐹 -dimensional embedding of each node.

3.1 Related work
Recent work [2] proposed building a tensor 𝑿 whose first frontal

slab 𝑿1 is the network adjacency matrix, while its second frontal

slab 𝑿2 is the an attribute adjacency, obtained by computing the

set of 𝑘 nearest neighbors [28] of each node in attribute space. In

other words, the attributes of a given node are viewed as a vector in

Euclidean space, and the 𝑘 closest attribute vectors of other nodes

in the network are used to define the neighbors of the given node.

The number of nearest neighbors is a parameter that needs to be

tuned. A second adjacency matrix is produced this way, which

however is not necessarily symmetric (even if the original network

adjacency is). Joint analysis of these two adjacency matrices yields

embeddings that reflect both pieces of information – but are not

geometry-preserving, because (approximately) reproducing these

adjacency matrices has no geometric motivation / interpretation.

In this work we propose a principled formulation that directly

aims to produce an embedding that can reproduce the distances

between nodes in terms of their network adjacency and in terms

of their attributes. We find common latent dimensions that ex-

plain both sets of distances. With proper weighting, the resulting

embedding vectors reproduce the adjacency distances; with an-

other weighting, they reproduce the attribute distances (and these

weights are a by-product of our analysis). Either way, the latent

dimensions are derived from (and reflect) both sets of distances.

This is why we call the approach geometry preserving. Depending
on the downstream task, different weighting schemes would be

more appropriate. Our formulation draws from multi dimensional

scaling (MDS), which is briefly reviewed next.

3.2 Multi dimensional scaling
MDS is a distance-preserving mapping, visualization, and embed-

ding tool [9, 24, 31, 35]. Given an 𝑁 × 𝑁 matrix 𝑫 of distances

between 𝑁 entities, MDS seeks to find 𝑁 points in low-dimensional

space (typically 2- or 3-dimensional, for visualization purposes)

that approximately exhibit the given distances. Various distances

(and pseudo-distances) can be used for MDS. The most popular is

the Euclidean distance, leading to the classical MDS, but there exist

non-metric versions of MDS which seek to preserve ordering as

opposed to distances [24]. We next briefly review classical MDS.

Let 𝑫 (2) ∈ R𝑁×𝑁 be the matrix of squared distances between 𝑁

entities, with 𝑫 (2) (𝑖, 𝑗) being the squared distance between entity

𝑖 and entity 𝑗 . Now let 𝒆𝑖 be the vector representation of entity 𝑖 in

a low 𝐹 -dimensional Euclidean space. Then it holds that:

𝑫 (2) (𝑖, 𝑗) = ∥𝒆𝑖 − 𝒆 𝑗 ∥2 = ∥𝒆𝑖 ∥2 + ∥𝒆 𝑗 ∥2 − 2𝒆𝑇𝑖 𝒆 𝑗 (6)

Since the objective is to learn the {𝒆𝑖 }𝑁𝑖=1 we would like to end up

with an expression that ignores the squared norms ∥𝒆𝑖 ∥2, ∥𝒆 𝑗 ∥2 and
will be easy to factor. In this direction we observe that:

𝑫 (2) = 𝒈1𝑇 + 1𝒈𝑇 − 2𝑬𝑬𝑇 , (7)

where 𝒈 =
[
𝒆𝑇
1
𝒆1, . . . , 𝒆𝑇𝑁 𝒆𝑁

]𝑇
. Double centering both sides yields:(

𝑰 − 1

𝑁
11𝑇

)
𝑫 (2)

(
𝑰 − 1

𝑁
11𝑇

)
=

(
𝑰 − 1

𝑁
11𝑇

)
𝒈1𝑇

(
𝑰 − 1

𝑁
11𝑇

)
+(

𝑰 − 1

𝑁
11𝑇

)
1𝒈𝑇

(
𝑰 − 1

𝑁
11𝑇

)
−
(
𝑰 − 1

𝑁
11𝑇

)
2𝑬𝑬𝑇

(
𝑰 − 1

𝑁
11𝑇

)
,

(8)

which is equivalent to

− 1

2

(
𝑰 − 1

𝑁
11𝑇

)
𝑫 (2)

(
𝑰 − 1

𝑁
11𝑇

)
= 𝑬𝑬𝑇 , (9)

since

(
𝑰 − 1

𝑁
11𝑇

)
1 = 0 and we can assume without loss of gener-

ality that matrix 𝑬 is already centered. The solution for 𝑬 is given

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

441



by

𝑬 = 𝑼
√︁
𝚲𝐹 , (10)

where 𝑼 ∈ R𝑁×𝐹 is the matrix of 𝐹 principal eigenvectors and

𝚲𝐹 ∈ R𝐹×𝐹 a diagonal matrix with the 𝐹 principal eigenvalues

of − 1

2

(
𝑰 − 1

𝑁
11𝑇

)
𝑫 (2)

(
𝑰 − 1

𝑁
11𝑇

)
. In the non-ideal case where

𝑫 (2) is inexact, assuming that the left hand side of (9) remains (or

is projected to be) positive semidefinite, (10) gives the best vector

representation of the entities in an 𝐹 -dimensional space after double-
centering, albeit that is not optimal from the viewpoint of preserving

the original distances. For the latter, we need to resort to iterative

algorithms that minimize a suitable cost (or stress) function, but
that is often not necessary in practice.

MDS has also been generalized to the case where more than one

distance matrices are available for a set of entities [7]. For example,

the entities could be a set of 𝑁 different products and 𝐾 individuals

are asked to rate their similarity or dissimilarity. This results in

𝐾 different 𝑁 × 𝑁 distance matrices for the 𝑁 products. To be

more precise let 𝑫 (2)
𝑘
∈ R𝑁×𝑁 be the 𝑘-th given distance matrix.

Three-way MDS forms a third-order tensor 𝑿 ∈ R𝑁×𝑁×𝐾 as:

𝑿 (:, :, 𝑘) =
(
𝑰 − 1

𝑁
11𝑇

)
𝑫 (2)
𝑘

(
𝑰 − 1

𝑁
11𝑇

)
(11)

and performs CPD of𝑿 to find a joint 𝐹 -dimensional representation

of the entities.

3.3 GAGE: Geometry preserving Attributed
Graph Embeddings

In the previous section we introduced the task of unsupervised

node embedding. The objective of this task is to map each node

of the network to a low dimensional vector representation in the

Euclidean space. It is desirable that the low dimensional embedding

contains as much connectivity and attribute information as possible

and progress in this direction is the key to successful embeddings.

In this section, motivated by the benefits of MDS, we propose a

novel unsupervised node embedding scheme that works with at-

tributed networks. The proposed node embedding scheme attempts

to preserve the network geometry inferred both from connectiv-

ity and attribute information. Furthermore, the node embeddings

are unique. Note that uniqueness is a fundamental property that

each embedding should enjoy. It offers a unique representation

of each node, which is necessary for any form of interpretability

and also guarantees that the embedding is permutation invariant.

In other words any permuted version of the adjacency yields the

same embedding for each node. Finally the proposed representation

model is flexible in the sense that it can handle both directed and

undirected graphs and does not require connectivity and attributed

information for every node. In other words embeddings can be

produced for nodes with either missing connectivity information

or missing attributes.

Traditional MDS starts from a distance matrix and looks for

vector representations of the nodes. In our setting, we are given

the adjacency representation of each node along with a vector of

attributes. The obvious approach would be to try and learn low-

dimensional node embeddings directly from the high-dimensional

graph and attribute representation of each node. However, since

our objective is the produced embeddings to preserve the network

geometry in terms of Euclidean distances, we propose to follow a

different route. In particular, given the adjacency and the attributes

of the network we compute distance matrices, one for the connec-

tivity information and another for the attribute information. This

transformation from adjacency and attributes to connectivity and

attribute distances is the key to our proposed geometry preserving

embeddings. Then we decompose the tensor of distances, using

the CPD model, and produce the low-dimensional embeddings. As

we see later in the section, the produced embeddings, which are

formed from the CPD factors, can reproduce both the connectivity

and attribute distances. Note that, from a computational viewpoint,

instantiating the Euclidean distance matrices of connectivity and at-

tributes might be prohibitive, since it destroys the sparsity structure.

Interestingly, there is a elegant way to overcome it.

In order to facilitate the analysis let 𝑺G ∈ {0, 1}𝑁×𝑁 denote

the adjacency matrix of graph G and A ∈ R𝑁×𝑑 be the matrix the

contains in row 𝑖 𝑑 attributes or features of vertex 𝑖 . Also let 𝒀1 = 𝑺G
and 𝒀2 = A. Taking a closer look at equation (8) we observe that

double centering the matirx of Euclidean distances between the

rows of 𝒀1 or 𝒀2 is equal to double centering 𝒀1𝒀𝑇
1
or 𝒀2𝒀𝑇

2
. This is

due to the fact that 𝒀1 or 𝒀2 contain the generating vectors of the

distance matrices and equation (7) always holds. We now transform

the adjacency and attribute to distance matrices:

𝑿1 =

(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀

𝑇
1

(
𝑰 − 1

𝑁
11𝑇

)
, (12)

𝑿2 =

(
𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀

𝑇
2

(
𝑰 − 1

𝑁
11𝑇

)
. (13)

Note that 𝑿1 (𝑖, 𝑗) denotes the squared Euclidean distance (after

double centering) between 𝑺𝐺 (𝑖, :) and 𝑺𝐺 ( 𝑗, :), i.e., two rows of

the adjacency matrix. Also 𝑿2 (𝑖, 𝑗) denotes the squared Euclidean

distance (after double centering) between A(𝑖, :) and A( 𝑗, :), i.e.,
two attributed information of different nodes. It is important to

mention that in most applications 𝑺G and A are sparse matrices

which facilitates storage and computation requirements. Double

centering these matrices automatically yields dense matrices. How-

ever, as we will see next our approach doesn’t instantiate the dense

𝑿1 and 𝑿2 but works with sparse 𝒀1 and 𝒀2, which is crucial to

keep the computational and memory complexity of the algorithm

low.

To compute the node embeddings of the attributed network, we

propose to employ the following optimization scheme:

min

𝑼 ,𝚲1,𝚲2

∥𝑿1 − 𝑼𝚲1𝑼
𝑇 ∥2𝐹 + ∥𝑿2 − 𝑼𝚲2𝑼

𝑇 ∥2𝐹 , (14)

where 𝑼 ∈ R𝑁×𝐹 and 𝚲1,𝚲2 are real and positive valued 𝐹 × 𝐹
diagonal matrices. Problem (14) is the rank 𝐹 CPD of tensor 𝑿 ∈
R𝑁×𝑁×2, with frontal slabs 𝑿 (:, :, 1) = 𝑿1 and 𝑿 (:, :, 2) = 𝑿2. The

CPD model for 𝑿 takes the form:

𝑿 = ⟦𝑼 , 𝑼 , 𝑪⟧, 𝑪 (𝑖, :)𝑇 = diag (𝚲𝑖 ) , 𝑖 = 1, 2, (15)

where diag (𝚲𝑖 ) is the diagonal vector of 𝚲𝑖 . The proposed embed-

ding for vertex 𝑖 is :

𝒆𝑖 = 𝑬 (𝑖, :)𝑇 = diag

(√︃
𝜆𝑪 (:, 1)𝑇 + (1 − 𝜆)𝑪 (:, 2)𝑇

)
𝑼 (𝑖, :)𝑇 , (16)

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

442



where diag

(√︁
𝜆𝑪 (:, 1)𝑇 + (1 − 𝜆)𝑪 (:, 2)𝑇

)
gives the diagonal ma-

trix of vector

√︁
𝜆𝑪 (:, 1)𝑇 + (1 − 𝜆)𝑪 (:, 2)𝑇 . Note that the 0 ≤ 𝜆 ≤ 1

parameter balances the contribution of each distance measure (con-

nectivity or attribute) in the final embedding. For 𝜆 = 1 the focus

is completely on the connectivity distances, whereas for 𝜆 = 0 the

emphasis is on the attribute distances.

Invoking the uniqueness properties o the CPD (see Theorem 1

for details) we have shown the following result:

Result 1. If tensor 𝑿 has indeed low-rank, 𝐹 , there exist vectors
in 𝐹 dimensional space that generate the given sets of distances (with
appropriate weights). Then the GAGE embeddings for the correct 𝐹 are
unique, permutation invariant and will exactly reproduce both sets of
distances for 𝜆 = 0 and 𝜆 = 1.

The above result also implies that embeddings of dimension less

than 𝐹 cannot reconstruct the set of distances and embeddings of

dimension larger than 𝐹 are not unique.

4 ALGORITHMIC FRAMEWORK
In this section we discuss the algorithmic aspects of our approach.

4.1 The GAGE algorithm
The computation of the proposed node embeddings boils down to

solving the problem in (14). This is a CPD problem of an 𝑁 ×𝑁 × 2
tensor with a special sparsity structure on the frontal slabs. CPD

computation is a non-convex optimization problem and in general

NP-hard. However, exact CPD can be reduced to eigenvalue decom-

position (EVD) in certain cases – notably when tensor rank is low

enough [11, 30]. Such an approach is not guaranteed to produce

the optimal solution, but it often works well in practice, and it

also serves as good initialization for more sophisticated optimiza-

tion approaches. Developing a computationally efficient algebraic

initialization approach to tackle the problem in (14) is therefore

an important pivot for the proposed algorithm. This is GAGE-EVD,
which is summarized in Algorithm 1. The first step of the approach

is to form the doubly centered frontal slabs. Note that instantiating

𝑿1, 𝑿2 is not required and we can directly work with 𝒀1, 𝒀2 as
shown in Appendix A.1; GAGE-EVD exploits sparsity and the special
problem structure to mitigate memory and complexity require-

ments. The next step is to compute the 𝐹 principal eigenvectors

𝑽 of 𝑿𝑇
1
𝑿1 + 𝑿𝑇

2
𝑿2. Towards this, end we employ the orthogo-

nal iterations method [15] which also exploits the special sparsity

structure to enable lightweight computations. Finally, we form

𝑺1 = 𝑽𝑇𝑿1𝑽 , 𝑺2 = 𝑽𝑇𝑿2𝑽 which are dense but small (𝐹 × 𝐹 ) ma-

trices and compute the eigenvalue decomposition of 𝑺2𝑺−1
1
. Then

𝑼 is computed as 𝑼𝑇 = 𝑼̃−1𝑺1. In terms of computational com-

plexity, the main bottleneck of GAGE-EVD is computing the EVD of

𝑿𝑇
1
𝑿1 + 𝑿𝑇

2
𝑿2. Using the orthogonal iterations method, this EVD

can be computed efficiently in O(𝑁𝐹 2) flops. The remaining opera-

tions involve 𝐹 ×𝐹 matrices and are computationally light. Detailed

description of the algorithmic updates along with computational

complexity and memory requirements is given in Appendix A.1.

After computing an initial estimate of matrix 𝑼 , we feed it to

the main GAGE algorithm, which is summarized in Algorithm 2. To

tackle the problem in (14) GAGE follows an alternating least squares

approach, with the first two factors 𝑼 , 𝑼
′
not constrained to be

Algorithm 1: GAGE-EVD

Input: 𝒀1 = 𝑺G,𝒀2 = A, 𝐹 .
Output: 𝑼 .

𝑿1 =
(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀𝑇

1

(
𝑰 − 1

𝑁
11𝑇

)
;

𝑿2 =
(
𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀𝑇

2

(
𝑰 − 1

𝑁
11𝑇

)
;

𝑽𝚺𝑽𝑇 ← EVD

(
𝑿𝑇
1
𝑿1 +𝑿𝑇

2
𝑿2, 𝐹

)
;

𝑺1 = 𝑽𝑇𝑿1𝑽 , 𝑺2 = 𝑽𝑇𝑿2𝑽 ;

˜𝑼 ← EVD

(
𝑺2𝑺−1

1

)
;

𝑼𝑇 = ˜𝑼−1𝑽𝑇
;

Algorithm 2: GAGE

Input: 𝒀1 = 𝑺G,𝒀2 = A, 𝑼 .

Output: 𝑬 .
𝑿1 =

(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀𝑇

1

(
𝑰 − 1

𝑁
11𝑇

)
;

𝑿2 =
(
𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀𝑇

2

(
𝑰 − 1

𝑁
11𝑇

)
;

𝑿 (:, :, 1) = 𝑿1, 𝑿 (:, :, 2) = 𝑿2;

𝑪 ← solve 𝑿 (3) = (𝑼 ⊙ 𝑼 )𝑪𝑇
;

𝑼
′
= 𝑼 ;

repeat
𝑼 ← solve 𝑿 (1) = (𝑪 ⊙ 𝑼

′ )𝑼𝑇
;

𝑼
′ ← solve 𝑿 (2) = (𝑪 ⊙ 𝑼 )𝑼 ′𝑇 ;

𝑪 ← solve 𝑿 (3) = (𝑼 ′ ⊙ 𝑼 )𝑪𝑇
;

until convergence
𝑬 = 𝑼 diag

(√︁
𝜆𝑪 (:, 1)𝑇 + (1 − 𝜆)𝑪 (:, 2)𝑇

)
;

equal (see Algorithm 2). In each update, we fix two factors and solve

for the remaining one. We repeat this procedure in an alternating

fashion. The update for each step is a linear system of equations and

can be solved efficiently without instantiating the dense tensor 𝑿

or any of the Khatri-Rao products, i.e., (𝑪 ⊙𝑼 ′), (𝑪 ⊙𝑼 ′), (𝑼 ′ ⊙𝑼 ).
The details are presented in Appendix A.2. Note that due to the

algebraic initialization, the GAGE algorithm converges in only a few

steps (usually fewer than 10) in our experiments.

5 EXPERIMENTS
In this section we demonstrate the performance of the proposed al-

gorithmic framework and showcase its effectiveness in experiments

with real attributed network data. All algorithms were implemented

in Matlab or Python, and executed on a Linux server comprising 8

cores at 3.6GHz with 32GB RAM.

5.1 Data
We used the following real-world networks (see also Table 2).

• BlogCatalog. A social network of bloggers in BlogCatalog

platform. Each blogger uses several keywords to describe

their blogs. These keywords have been used as attributes for

the node-bloggers. There are 6 different classes of bloggers

according to the content of their blogs. The attributes di-

mension represents the dictionary and each node is encoded

with a sparse bag-of-words representation.

• WebKB [14]. A network of webpages from computer science

departments categorized into 5 topics: faculty, student, project,

course, other. The attributes dimension is a dictionary of

words that appear in the webpages.

• Wikipedia [39]. A network of documents and theirWikipedia

links. The documents are grouped into 19 classes and the

attribute information corresponds to sparse TFIDF features.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

443



Table 2: Datasets

Dataset # Vertices # Edges Attribute dimension # Classes Network Type Feature Type

Wikipedia 2,405 23,192 4,973 19 Language Text associated info

WebKB 877 2,776 1,703 5 Citation Unique words

BlogCatalog 5,196 686,972 8,189 6 Social Keywords

5.2 Baselines
• Deepwalk [27]. Deepwalk generates truncated randomwalks

from each node, to learn low dimensional representations of

nodes using a SkiGram model. We set the number of walks

per node 𝛾 = 80, walk length 𝑡 = 40 and window size𝑤 = 10

as suggested in [27]. This method does not use the attributes,

and it is not expected to work as well as the other methods

that do. We include it, since it remains a strong contender,

and as a means to gauge the improvement afforded by having

access to the node attributes.

• T-Pine [2]. A tensor factorization based approach. The first

frontal slab is the adjacency of the graph and the second

frontal slab is the a k nearest neighbor matrix computed us-

ing the distances between the node attributes. The k nearest

neighbor parameter is set to 𝑘 = 8 for Wikipedia, 𝑘 = 40 for

WebKB as suggested in [2] and 𝑘 = 50 for BlogCatalog.
• Graph-AE [22]. A graph convolutional network (GCN) gen-

eralization for unsupervised node embedding. Graph-AE

uses a (GCN) encoder and a simple inner product decoder.

• Graph-VAE [22]. A variational auto encoder (VAE) alterna-

tive to Graph-AE. Both Graph-AE and Graph-VAE are trained
using 200 epochs and 0.01 learning rate. The dimension of

the hidden layer is twice the number of the embedding di-

mension. We use 5% of the data for validation.

• TADW [39]. Text associated Deepwalk (TADW) employs

a matrix factorization framework to learn network repre-

sentations using the adjacency matrix as well as textual

information features.

• DGI [37]. Deep Graph Infomax (DGI) uses a graph convolu-

tional neural network architecture to learn node embeddings

for attributed networks in an unsupervised manner. We train

for maximum 1000 epochs using the code provided by the

authors and set the ‘patience’ parameter equal to 20 and

learning rate equal to 0.001, as suggested in [37].

• AGE [10]. Adaptive Graph Encoder for Attributed Graph

Embedding (AGE) uses a Laplacian smoothing filter along

with an adaptive encoder to perform attributed node embed-

ding. We use 400 epochs and learning rate equal to 10
−3

for

training, as suggested in the author’s code.

• DANE [13]. Deep Attributed Network Embedding (DANE)

adopts a 2-branch encoder-decoder architecture to learn

attributed node embeddings. The first branch is associated

with the connectivity information of the network, whereas

the second one utilizes the attribute information. We use

500 epochs to train the autoencoder with learning rate and

dropout probability equal to 10
−5

and 0.2 respectively.

For all baselines we use the publicily available code provided by

the authors.

5.3 Node classification
We first test the performance of the proposed GAGE along with the

baselines in a node classification task. The procedure is divided in

two steps. In the first step the algorithms learn the node embeddings

in a unsupervised manner, i.e., without using label information.

In the second step the labels along with the learned embeddings

are split into training and testing sets. Then the training data are

fed to a one-versus-all logistic regression classifier with 𝑙2 norm

regularization. We test 3 different training-testing splits, i.e., 0.9-0.1,

0.5-0.5, and 0.1-0.9 and run 10 shuffles for each split. To assess the

performance of the competing algorithms we measure the average

micro and macro F1 score for 2 different embedding dimensions.

For the GAGE embeddings we set 𝜆 = 0.8. The results for the three

different datasets are presented in Tables 3, 4, 5.

It is clear from the tables that the proposed GAGE significantly

outperforms the baselines in both micro and macro F1 score, where

T-PINE usually comes second. In the Wikipedia dataset there are
instances where T-PINE is slightly better in micro F1 but GAGE is
better in macro F1. Taking into consideration that the Wikipedia
dataset consists of 19 classes and some classes are skewed, macro

F1 score is far more significant in this dataset. Note that Graph-AE
and Graph-VAE show in general very weak classification perfor-

mance and especially for the 𝐹 = 256 in BlogCatalog they fail to

produce acceptable results. We also notice that some baselines, that

take attributes into account, produce weaker results compared to

Deepwalk that only uses connectivity information. This is due to

the fact that the considered datasets have missing attributes and

certain baselines failed to be efficient under this challenging setting.

5.4 Link prediction
The proposed embeddings are also tested for link prediction – see

Appendix A. We observed that GAGE achieves high prediction per-

formance, but is sometimes outperformed by graph encoders and

auto-encoders as [10, 13, 21]. The reason is that graph encoders and

auto-encoders treat the unobserved links as unknown rather than

non-existing. This benefits link prediction but on the downside

renders these approaches task-specific and results in weak classi-

fication performance. On the contrary, GAGE is a global approach,
offers elite performance in both tasks and overall produces more

informative node embeddings.

5.5 Sensitivity analysis and running time
We examined the effect of parameter 𝜆 in the performance of GAGE
for node classification and link prediction. The details are relegated

to Appendix B due to space limitations. In a nutshell, we observe

that classification performance is consistent for 𝜆 ∈ [0.1, 0.9] and
the best performance is usually achieved for 𝜆 ∈ [0.5, 0.9]. Regard-
ing link prediction, the best results are achieved when 𝜆 = 1 and

the performance deteriorates as lambda decreases.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

444



Table 3: Average score and standard deviation over 10 shuffles for Wikipedia

Algorithm dimension micro (0.9) macro (0.9) micro (0.5) macro (0.5) micro (0.1) macro (0.1)

GAGE
64 0.7402 ± 0.0308 0.5331 ± 0.0239 0.7303 ± 0.0125 0.5262 ± 0.0217 0.6309 ± 0.0217 0.423 ± 0.0246
128 0.7656 ± 0.0255 0.5924 ± 0.0337 0.736 ± 0.0104 0.5802 ± 0.0198 0.649 ± 0.0179 0.4728 ± 0.0261

T-PINE
64 0.6788 ± 0.0312 0.4039 ± 0.0158 0.6619 ± 0.0072 0.3949 ± 0.0047 0.5912 ± 0.0139 0.3535 ± 0.0042
128 0.766 ± 0.0234 0.523 ± 0.0183 0.745 ± 0.009 0.5069 ± 0.0121 0.6364 ± 0.0081 0.4205 ± 0.0144

Deepwalk
64 0.6177 ± 0.0309 0.3632 ± 0.0213 0.6136 ± 0.0038 0.3736 ± 0.0119 0.5773 ± 0.0084 0.3415 ± 0.0126
128 0.6236 ± 0.0333 0.362 ± 0.0175 0.614 ± 0.006 0.3731 ± 0.0111 0.5811 ± 0.0095 0.3444 ± 0.0126

Graph-AE
64 0.6759 ± 0.0314 0.4512 ± 0.0335 0.6481 ± 0.0117 0.4254 ± 0.0193 0.5669 ± 0.0075 0.3452 ± 0.0121
128 0.6747 ± 0.0372 0.4327 ± 0.0346 0.6584 ± 0.0082 0.4287 ± 0.0203 0.5773 ± 0.01 0.3536 ± 0.0115

Graph-VAE
64 0.6283 ± 0.03 0.4108 ± 0.0297 0.6069 ± 0.009 0.3804 ± 0.0137 0.5592 ± 0.0112 0.3323 ± 0.0124
128 0.67 ± 0.0394 0.436 ± 0.028 0.6404 ± 0.0119 0.4098 ± 0.0195 0.5742 ± 0.0107 0.3431 ± 0.0109

TADW
64 0.7008 ± 0.0258 0.4541 ± 0.0244 0.6990 ± 0.0142 0.4781 ± 0.0156 0.6160 ± 0.0121 0.3996 ± 0.0126
128 0.7510 ± 0.0345 0.5378 ± 0.0373 0.7168 ± 0.0135 0.5170 ± 0.0224 0.6309 ± 0.0159 0.4221 ± 0.0218

DGI
64 0.5523 ± 0.0258 0.2806 ± 0.0095 0.4927 ± 0.0182 0.2271 ± 0.0124 0.3157 ± 0.0323 0.0741 ± 0.0139
128 0.5299 ± 0.0254 0.252 ± 0.0139 0.4563 ± 0.0171 0.1825 ± 0.0119 0.2924 ± 0.0458 0.066 ± 0.0148

AGE
64 0.6996 ± 0.0228 0.4398 ± 0.009 0.6826 ± 0.0138 0.4261 ± 0.0124 0.6038 ± 0.0217 0.3448 ± 0.0258
128 0.7058 ± 0.0323 0.452 ± 0.0182 0.6909 ± 0.0094 0.437 ± 0.0084 0.5833 ± 0.0217 0.3105 ± 0.0254

DANE
64 0.5029 ± 0.0383 0.2575 ± 0.0314 0.4259 ± 0.0243 0.1926 ± 0.0134 0.2409 ± 0.025 0.0575 ± 0.0124
128 0.6734 ± 0.0339 0.4141 ± 0.022 0.6565 ± 0.0112 0.3976 ± 0.0093 0.5321 ± 0.0208 0.2706 ± 0.0219

Table 4: Average score over 10 shuffles for WebKB

Algorithm dimension micro (0.9) macro (0.9) micro (0.5) macro (0.5) micro (0.1) macro (0.1)

GAGE
64 0.8852 ± 0.0375 0.7588 ± 0.0506 0.8547 ± 0.0221 0.7005 ± 0.0228 0.7722 ± 0.0233 0.5701 ± 0.0352
128 0.8864 ± 0.037 0.7618 ± 0.0645 0.8601 ± 0.0148 0.7024 ± 0.0264 0.7566 ± 0.0256 0.5419 ± 0.0372

T-PINE
64 0.8148 ± 0.0318 0.6504 ± 0.0633 0.8016 ± 0.0192 0.6361 ± 0.0224 0.7033 ± 0.018 0.5204 ± 0.0185
128 0.7989 ± 0.0297 0.6394 ± 0.0632 0.7743 ± 0.0144 0.6141 ± 0.0241 0.681 ± 0.0201 0.4822 ± 0.0166

Deepwalk
64 0.5081 ± 0.0543 0.2627 ± 0.0284 0.4786 ± 0.0206 0.2448 ± 0.0217 0.4367 ± 0.0152 0.2228 ± 0.0175
128 0.4977 ± 0.049 0.2914 ± 0.0437 0.4674 ± 0.0207 0.2487 ± 0.0242 0.4447 ± 0.015 0.2249 ± 0.0177

Graph-AE
64 0.4591 ± 0.0306 0.1261 ± 0.0061 0.4722 ± 0.0144 0.1294 ± 0.0029 0.4767 ± 0.0079 0.1373 ± 0.0119
128 0.4591 ± 0.0306 0.1257 ± 0.0058 0.4715 ± 0.0146 0.1281 ± 0.0027 0.4732 ± 0.0056 0.1285 ± 0.001

Graph-VAE
64 0.5261 ± 0.0322 0.2435 ± 0.0275 0.5276 ± 0.0135 0.2502 ± 0.0123 0.4985 ± 0.0165 0.2483 ± 0.0267
128 0.542 ± 0.0446 0.2489 ± 0.0206 0.5376 ± 0.0207 0.2521 ± 0.012 0.5009 ± 0.0185 0.2434 ± 0.0258

TADW
64 0.6931 ± 0.0344 0.5368 ± 0.0562 0.6646 ± 0.0226 0.4887 ± 0.0355 0.5988 ± 0.0190 0.3889 ± 0.0250
128 0.7511 ± 0.0404 0.6176 ± 0.0849 0.7200 ± 0.0252 0.5539 ± 0.0305 0.6287 ± 0.0213 0.4197 ± 0.0306

DGI
64 0.4705 ± 0.0378 0.147 ± 0.0199 0.4797 ± 0.0163 0.1444 ± 0.0067 0.4762 ± 0.0068 0.1336 ± 0.0036
128 0.4727 ± 0.0374 0.1472 ± 0.0205 0.4772 ± 0.0146 0.1378 ± 0.0047 0.4746 ± 0.0069 0.1308 ± 0.0037

AGE
64 0.5205 ± 0.0312 0.2225 ± 0.026 0.5041 ± 0.02 0.1955 ± 0.0155 0.4618 ± 0.0196 0.164 ± 0.0283
128 0.517 ± 0.0334 0.2133 ± 0.0208 0.5107 ± 0.0183 0.2003 ± 0.0066 0.4654 ± 0.0262 0.1663 ± 0.0335

DANE
64 0.6136 ± 0.0356 0.2854 ± 0.0143 0.5503 ± 0.025 0.2324 ± 0.0161 0.4903 ± 0.0462 0.1776 ± 0.04
128 0.7295 ± 0.0457 0.4309 ± 0.0378 0.7064 ± 0.0219 0.4089 ± 0.026 0.6287 ± 0.0292 0.3181 ± 0.0314

Table 5: Average score and standard deviation over 10 shuffles for BlogCatalog

Algorithm dimension micro (0.9) macro (0.9) micro (0.5) macro (0.5) micro (0.1) macro (0.1)

GAGE
128 0.9233 ± 0.009 0.9208 ± 0.0095 0.9191 ± 0.0028 0.9171 ± 0.0027 0.8858 ± 0.0101 0.8842 ± 0.0098
256 0.9538 ± 0.0082 0.9527 ± 0.0082 0.9457 ± 0.0017 0.9447 ± 0.0018 0.912 ± 0.0066 0.9109 ± 0.0066

T-PINE
128 0.9281 ± 0.0087 0.9263 ± 0.0093 0.9145 ± 0.0045 0.913 ± 0.0047 0.8577 ± 0.0055 0.8563 ± 0.0053
256 0.9213 ± 0.0098 0.9196 ± 0.0097 0.9076 ± 0.0043 0.9061 ± 0.0044 0.8681 ± 0.0048 0.867 ± 0.0048

Deepwalk
128 0.6937 ± 0.0212 0.6802 ± 0.0218 0.681 ± 0.0056 0.673 ± 0.0059 0.6187 ± 0.0083 0.6117 ± 0.0081
256 0.6923 ± 0.0197 0.6796 ± 0.0207 0.6823 ± 0.0051 0.6743 ± 0.0054 0.619 ± 0.0089 0.6121 ± 0.0086

Graph-AE
128 0.2521 ± 0.0128 0.179 ± 0.0077 0.2455 ± 0.0086 0.1806 ± 0.0133 0.2547 ± 0.0107 0.1454 ± 0.0154
256 − − − − − −

Graph-VAE
128 0.5306 ± 0.01 0.4896 ± 0.0119 0.5182 ± 0.0092 0.4754 ± 0.0128 0.467 ± 0.0149 0.4204 ± 0.021
256 − − − − − −

TADW
128 0.8504 ± 0.0106 0.8483 ± 0.012 0.8464 ± 0.0043 0.8442 ± 0.0044 0.8296 ± 0.0046 0.8284 ± 0.0042
256 0.8485 ± 0.0102 0.8466 ± 0.0118 0.8446 ± 0.0041 0.8424 ± 0.0042 0.829 ± 0.0048 0.8278 ± 0.0042

DGI
128 0.6017 ± 0.0136 0.5624 ± 0.0136 0.5786 ± 0.0149 0.527 ± 0.0208 0.3693 ± 0.0583 0.2761 ± 0.0602
256 0.6163 ± 0.0175 0.5642 ± 0.0188 0.595 ± 0.0157 0.5376 ± 0.0179 0.3236 ± 0.0729 0.2235 ± 0.0683

AGE
128 0.7279 ± 0.0174 0.7219 ± 0.0183 0.7109 ± 0.0063 0.7053 ± 0.0067 0.7279 ± 0.0174 0.7219 ± 0.0183
256 0.726 ± 0.0147 0.7195 ± 0.0154 0.7115 ± 0.0052 0.7057 ± 0.0055 0.6708 ± 0.0097 0.658 ± 0.0105

DANE
128 0.4821 ± 0.0126 0.4637 ± 0.0153 0.4654 ± 0.0118 0.4364 ± 0.0126 0.4821 ± 0.0126 0.4637 ± 0.0153
256 0.6748 ± 0.0149 0.6597 ± 0.016 0.6488 ± 0.01 0.6207 ± 0.015 0.4206 ± 0.0546 0.3407 ± 0.0715

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

445



Table 6: Running time (sec)

Dataset GAGE T-PINE Deepwalk G-AE G-VAE TADW DGI AGE DANE

Wiki 32.2 79.5 267 47.9 49.7 8.1 42.7 202.1 155+1597.2

WebKB 2.2 80.1 73.8 20 20 2.7 10.7 14.2 51.9+464.1

BCatalog 17.7 628 653.8 347.6 340.2 63.4 269 1458.1 416.1+4111.8

We also measured the running time required for our proposed

GAGE and the baselines to produce 128-dimensional embeddings

for the three datasets. The results are presented in Table 6. DANE
requires additional time (indicated after the plus sign) to compute

random walks. It is clear that the proposed GAGE is the fastest for
WebKB and BlogCatalog, whereas TADW is the fastest for Wikipedia.

6 CONCLUSIONS
In this paper we proposed GAGE, a novel tensor-based approach

for unsupervised node embedding of attributed networks. GAGE
leverages the favorable properties of multi dimensional scaling and

canonical polyadic decomposition and provides embeddings that

preserve the geometry of both network connectivity and attributes.

Although the proposed approach works with distance matrices

rather than the original adjacency and attributes the algorithm can

still exploit the sparsity structure of the graph and the attributes

and admits a scalable and lightweight implementation. Experiments

with real world benchmark networks showcase the effectiveness of

the proposed GAGE on downstream tasks.

A APPENDIX: EFFICIENT CPD
COMPUTATIONS FOR MDS TENSOR

We are given an adjacency matrix 𝒀1 = 𝑺G ∈ {0, 1}𝑁×𝑁 and a

matrix of node attributes 𝒀2 = A ∈ R𝑁×𝑑 . We are interested in

computing the CPD of tensor 𝑿 with:

𝑿 (:, :, 1) = 𝑿1 =

(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀

𝑇
1

(
𝑰 − 1

𝑁
11𝑇

)
, (17)

𝑿 (:, :, 2) = 𝑿2 =

(
𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀

𝑇
2

(
𝑰 − 1

𝑁
11𝑇

)
(18)

The objective of this Appendix is to show how to perform this

CPD computation by exploiting the special sparsity structure and

without instantiating a dense 𝑿 .

A.1 GAGE-EVD
The first step of GAGE algorithm involves an eigenvalue decomposi-

tion. The bottleneck operation is:

𝑽𝚺𝑽𝑇 ← EVD

(
𝑿 (1)

𝑇

𝑿 (1) , 𝐹
)

(19)

First let us observe the structure of matrix 𝑿 (1)
𝑇
𝑿 (1)

. Note that

𝑿 (1) =

[
𝑿1

𝑿2

]
, and 𝑿1, 𝑿2 are both symmetric matrices.

𝑿 (1)
𝑇

𝑿 (1) =
[
𝑿𝑇
1
𝑿𝑇
2

] [𝑿1

𝑿2

]
= 𝑿𝑇

1
𝑿1 + 𝑿𝑇2 𝑿2 = (20)(

𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀

𝑇
1

(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀

𝑇
1

(
𝑰 − 1

𝑁
11𝑇

)
+ (21)(

𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀

𝑇
2

(
𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀

𝑇
2

(
𝑰 − 1

𝑁
11𝑇

)
, (22)

since

(
𝑰 − 1

𝑁
11𝑇

) (
𝑰 − 1

𝑁
11𝑇

)
=

(
𝑰 − 1

𝑁
11𝑇

)
. To compute the

EVD of 𝑿 (1)
𝑇
𝑿 (1)

we resort to the orthogonal iterations method

[15]. The steps are summarized as follows:

• Initialize 𝑸0 ∈ R𝑁×𝐹 : orthogonal matrix

repeat:

• 𝑾𝑘 =

(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀𝑇

1

(
𝑰 − 1

𝑁
11𝑇

)
𝒀1𝒀𝑇

1

(
𝑰 − 1

𝑁
11𝑇

)
𝑸𝑘−1+(

𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀𝑇

2

(
𝑰 − 1

𝑁
11𝑇

)
𝒀2𝒀𝑇

2

(
𝑰 − 1

𝑁
11𝑇

)
𝑸𝑘−1

• 𝑸𝑘 ← QR (𝑾𝑘 )
until convergence

It is clear that the above procedure does not instantiate 𝑿1, 𝑿2

and works directly with 𝒀1, 𝒀2. In the first step of the loop every

computation is either a sparse or rank 1 multiplication which can

be performed efficiently. The computationally more intensive com-

putation lies in the QR computation of matrix𝑾𝑘 . The complexity

of this step is O(𝑁𝐹 2) which is linear in the number of nodes.

A.2 Sparsity aware GAGE
Now we study the ALS updates in GAGE algorithm. The update for

𝑼 can be written as:

𝑼 ← solve

((
𝑪𝑇 𝑪) ∗ (𝑼

′𝑇
𝑼
′ ))

𝑼𝑇 =

(
𝑪 ⊙ 𝑼

′ )𝑇
𝑿 (1) . (23)

The matrix-matrix multiplication in the right hand side exploits the

special structure of 𝑿 (1) :(
𝑪 ⊙ 𝑼

′ )𝑇
𝑿 (1) =

[
𝑼
′
diag (𝑪 (1, :))

𝑼
′
diag (𝑪 (2, :))

]𝑇 [
𝑿1

𝑿2

]
=

2∑︁
𝑘=1

diag (𝑪 (𝑘, :)) 𝑼
′𝑇

(
𝑰 − 1

𝑁
11𝑇

)
𝒀𝑘𝒀

𝑇
𝑘

(
𝑰 − 1

𝑁
11𝑇

)
. (24)

It follows that the number of flops required to compute (24) is

O(𝑠𝐹 ), where 𝑠 = 𝑠1 + 𝑠2 and 𝑠1, 𝑠2 are the number of non-zeros in

𝒀1, 𝒀2 respectively. Furthermore, 𝑿1, 𝑿2 are not being instantiated.

The same principles hold for the update of 𝑼
′
:

𝑼
′
← solve

((
𝑪𝑇 𝑪) ∗ (𝑼𝑇 𝑼

))
𝑼
′𝑇

= (𝑪 ⊙ 𝑼 )𝑇 𝑿 (2) . (25)

(𝑪 ⊙ 𝑼 )𝑇 𝑿 (2) =
[
𝑼diag (𝑪 (1, :))
𝑼diag (𝑪 (2, :))

]𝑇 [
𝑿1

𝑿2

]
=

2∑︁
𝑘=1

diag (𝑪 (𝑘, :)) 𝑼𝑇
(
𝑰 − 1

𝑁
11𝑇

)
𝒀𝑘𝒀

𝑇
𝑘

(
𝑰 − 1

𝑁
11𝑇

)
. (26)

The update of 𝑪 can be written as:

𝑪 ← solve

((
𝑼
′𝑇
𝑼
′
) ∗ (𝑼𝑇 𝑼

))
𝑪𝑇 =

(
𝑼
′
⊙ 𝑼

)𝑇
𝑿 (3) . (27)

To avoid instantiating 𝑼
′ ⊙ 𝑼 , we observe that:

(
𝑼
′
⊙ 𝑼

)𝑇
𝑿 (3) =


𝑼 (:, 1)𝑇𝑿1𝑈

′ (:, 1), 𝑼 (:, 1)𝑇𝑿2𝑈
′ (:, 1)

.

.

.

𝑼 (:, 𝐹 )𝑇𝑿1𝑈
′ (:, 𝐹 ), 𝑼 (:, 𝐹 )𝑇𝑿2𝑈

′ (:, 𝐹 )

 (28)

The operation in (28) avoids storing 𝑼
′ ⊙ 𝑼 . Furthermore, the for-

mula in (12) is used for 𝑿1, 𝑿2, which exploits the structure of

𝒀1, 𝒀2 and does not instantiate 𝑿1, 𝑿2. The overall operation can

be computed efficiently in O(𝑚𝑎𝑥{𝑁𝐹, 𝑠𝐹 }) flops.

ACKNOWLEDGMENTS
Research was partially supported by NSF IIS-1908070 and ARO

W911NF1910407.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

446



REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. 2013. Distributed large-scale natural graph factorization.

In Proceedings of the 22nd international conference on World Wide Web. 37–48.
[2] Saba A Al-Sayouri, Ekta Gujral, Danai Koutra, Evangelos E Papalexakis, and

Sarah S Lam. 2018. t-PNE: tensor-based predictable node embeddings. In 2018
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE, 491–494.

[3] Albert-László Barabási et al. 2016. Network science. Cambridge university press.

[4] Dimitris Berberidis and Georgios B Giannakis. 2019. Node embedding with

adaptive similarities for scalable learning over graphs. IEEE Transactions on
Knowledge and Data Engineering (2019).

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-

resentations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management. 891–900.

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for

learning graph representations.. In AAAI, Vol. 16. 1145–1152.
[7] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in

multidimensional scaling via an N-way generalization of “Eckart-Young” decom-

position. Psychometrika 35, 3 (1970), 283–319.
[8] Luca Chiantini and Giorgio Ottaviani. 2012. On generic identifiability of 3-tensors

of small rank. SIAM J. Matrix Anal. Appl. 33, 3 (2012), 1018–1037.
[9] Michael AA Cox and Trevor F Cox. 2008. Multidimensional scaling. In Handbook

of data visualization. Springer, 315–347.
[10] Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. 2020. Adaptive Graph

Encoder for Attributed Graph Embedding. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 976–985.

[11] Ignat Domanov and Lieven De Lathauwer. 2014. Canonical polyadic decomposi-

tion of third-order tensors: reduction to generalized eigenvalue decomposition.

SIAM J. Matrix Anal. Appl. 35, 2 (2014), 636–660.
[12] David Easley, Jon Kleinberg, et al. 2010. Networks, crowds, and markets. Vol. 8.

Cambridge university press Cambridge.

[13] Hongchang Gao and Heng Huang. 2018. Deep attributed network embedding. In

Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI)).
[14] Lise Getoor. 2005. Link-based classification. In Advanced methods for knowledge

discovery from complex data. Springer, 189–207.
[15] GH Golub and CF Van Loan. 2013. Matrix Computations 4th Edition The Johns

Hopkins University Press. Baltimore, MD (2013).

[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[18] Richard A Harshman, Margaret E Lundy, et al. 1994. PARAFAC: Parallel factor

analysis. Computational Statistics and Data Analysis 18, 1 (1994), 39–72.
[19] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network

embedding. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining. 731–739.

[20] Charilaos I Kanatsoulis and Nicholas D Sidiropoulos. 2021. TeX-Graph: Coupled

tensor-matrix knowledge-graph embedding for COVID-19 drug repurposing.

In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM).
SIAM, 603–611.

[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[23] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.

[24] Joseph B Kruskal. 1978. Multidimensional scaling. Number 11. Sage.

[25] Mark Newman. 2018. Networks. Oxford university press.

[26] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[28] Leif E Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.
[29] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network embedding as matrix factorization: Unifying deepwalk, line, pte, and

node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 459–467.

[30] Eugenio Sanchez and Bruce R Kowalski. 1990. Tensorial resolution: a direct

trilinear decomposition. Journal of Chemometrics 4, 1 (1990), 29–45.
[31] Susan S Schiffman, M Lance Reynolds, and Forrest W Young. 1981. Introduction

to multidimensional scaling. Academic press New York.

[32] Blake Shaw and Tony Jebara. 2009. Structure preserving embedding. In Proceed-
ings of the 26th Annual International Conference on Machine Learning. 937–944.

[33] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evange-

los E Papalexakis, and Christos Faloutsos. 2017. Tensor decomposition for signal

processing and machine learning. IEEE Transactions on Signal Processing 65, 13

(2017), 3551–3582.

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[35] Warren S Torgerson. 1952. Multidimensional scaling: I. Theory and method.

Psychometrika 17, 4 (1952), 401–419.
[36] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

Verse: Versatile graph embeddings from similarity measures. In Proceedings of
the 2018 World Wide Web Conference. 539–548.

[37] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3 (2019), 4.
[38] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-

bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 1225–1234.

[39] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.

Network representation learning with rich text information. In Proceedings of
the 24th International Conference on Artificial Intelligence. 2111–2117.

A LINK PREDICTION
We test the performance of the competing algorithms in the link

prediction task. To do that we remove 50% of the edges for each

network and then run the embedding algorithms. We form a testing

set of the removed edges along with an equal number of randomly

sampled non-edges. Then we compute 𝒆𝑇
𝑖
𝒆 𝑗 for each 𝑖, 𝑗 edge in the

testing set and rank the edges according to 𝒆𝑇
𝑖
𝒆 𝑗 . Higher ranked

edges are more likely to have a link. To assess the performance of

the baselines we measure the area under ROC curve (AUC) and

Average Precision (Avg. Prec.). The results are presented in Table 7

and are averaged over 5 shuffles. We observe that for Wikipedia,
the proposed GAGE and the autoencoders work similarly and AGE
is the best. In the WebKB network DANE works the best, whereas

in BlogCatalog Graph-VAE and Graph-AE outperform GAGE and

the baselines. However, taking into consideration that in node

classification task GAGE works markedly better, we conclude that

GAGE produces more informative node embeddings.

B SENSITIVITY ANALYSIS
In this subsection we examine the effect of parameter 𝜆 in the per-

formance of the proposed GAGE embeddings for node classification

and link prediction.

First, we test the effect of 𝜆 on node classification. We set the

embedding dimension equal to 𝐹 = 128 and vary 𝜆 from 1 to 0

with step equal to 0.1. We measure micro-F1 and macro-F1 scores

for 90 − 10, 50 − 50 and 10 − 90 training-testing splits. Recall that

high values of 𝜆 aim to preserve the network geometry associated

with the connectivity information, whereas low values of 𝜆 better

preserve the attribute distances. The results for Wikipedia, WebKB
and BlogCatalog are presented in Figs. 1, 3 and 5 respectively. The

classification performance is consistent for 𝜆 ∈ [0.1, 0.9] and the

best performance is usually achieved for 𝜆 ∈ [0.5, 0.9]. When 𝜆 = 1

the focus is solely on the graph and classification performance is

weaker compared to all other values. This stresses the importance

of network attributes in node representation learning and graph

node classification.

Next we examine the effect of parameter 𝜆 in link prediction.

In this direction we vary 𝜆 from 1 to 0 with step equal to 0.1, as

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

447



Table 7: Average score and standard deviation over 5 shuffles for link prediction

Dataset

Algorithm Wikipedia WebKB BlogCatalog

AUC Avg. Prec. AUC Avg. Prec. AUC Avg. Prec.

GAGE 0.8405 ± 0.0018 0.8819 ± 0.0017 0.8604 ± 0.0078 0.8347 ± 0.0112 0.7201 ± 0.0013 0.7589 ± 0.0077
T-PINE 0.8208 ± 0.0069 0.8767 ± 0.0044 0.7134 ± 0.0109 0.7308 ± 0.0121 0.6472 ± 0.0056 0.6638 ± 0.0034

Deepwalk 0.7965 ± 0.0056 0.8254 ± 0.0044 0.6104 ± 0.0145 0.6646 ± 0.0128 0.6645 ± 0.0049 0.6891 ± 0.0064
Graph-AE 0.8250 ± 0.0040 0.8833 ± 0.0043 0.8037 ± 0.0287 0.8335 ± 0.0225 0.8231 ± 0.0222 0.8202 ± 0.0367
Graph-VAE 0.8479 ± 0.0073 0.8949 ± 0.0047 0.8014 ± 0.0375 0.8314 ± 0.0284 0.8218 ± 0.0100 0.8248 ± 0.0164

TADW 0.7087 ± 0.0028 0.7722 ± 0.0032 0.7966 ± 0.0160 0.8178 ± 0.0186 0.5351 ± 0.0014 0.5317 ± 0.0008
DGI 0.8262 ± 0.0020 0.8409 ± 0.0019 0.7778 ± 0.0045 0.8179 ± 0.0032 0.7434 ± 0.0021 0.7404 ± 0.0003
AGE 0.9173 ± 0.0025 0.9151 ± 0.0048 0.9040 ± 0.0037 0.8612 ± 0.0098 0.7747 ± 0.0102 0.7533 ± 0.0097
DANE 0.8228 ± 0.0032 0.8346 ± 0.0025 0.9201 ± 0.0100 0.8715 ± 0.0088 0.6347 ± 0.0220 0.6526 ± 0.0378

Figure 1: Effect of 𝜆 on Wikipedia node classification

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

m
ic

ro
-F

1

0.9-0.1

0.5-0.5

0.1-0.9

(a) micro-F1 score

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.35

0.4

0.45

0.5

0.55

0.6

m
a

c
ro

-F
1

0.9-0.1

0.5-0.5

0.1-0.9

(b) macro-F1 score

Figure 3: Effect of 𝜆 on WebKB node classification

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

m
ic

ro
-F

1

0.9-0.1

0.5-0.5

0.1-0.9

(a) micro-F1 score

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
a

c
ro

-F
1

0.9-0.1

0.5-0.5

0.1-0.9

(b) macro-F1 score

Figure 5: Effect of 𝜆 on BlogCatalog node classification

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.82

0.84

0.86

0.88

0.9

0.92

0.94

m
ic

ro
-F

1

0.9-0.1

0.5-0.5

0.1-0.9

(a) micro-F1 score

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

m
a

c
ro

-F
1

0.9-0.1

0.5-0.5

0.1-0.9

(b) macro-F1 score

before, and measure the AUC and Average Precision. The embed-

ding dimension is set to 𝐹 = 64, 128, 256 for WebKB, Wikipedia and

BlogCatalog respectively. The results are presented in Fig. 7. For

BlogCatalog the performance is consistent across all values of 𝜆.

Figure 7: Effect of 𝜆 on link prediction

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

AUC

Avg. Prec.

(a) Wikipedia

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

AUC

Avg. Prec.

(b) WebKB

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.5

0.55

0.6

0.65

0.7

0.75

0.8

AUC

Avg. Prec.

(c) BlogCatalog

For Wikipedia and WebKB we observe that better link prediction is

achieved when 𝜆 = 1 and the performance deteriorates as lambda

decreases. This expected as potential links affect the graph geom-

etry of the network and with 𝜆 = 1 we focus on preserving the

connectivity distances between the nodes.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

448


	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Statement
	3.1 Related work
	3.2 Multi dimensional scaling
	3.3 GAGE: Geometry preserving Attributed Graph Embeddings

	4 Algorithmic framework
	4.1 The GAGE algorithm

	5 Experiments
	5.1 Data
	5.2 Baselines
	5.3 Node classification
	5.4 Link prediction
	5.5 Sensitivity analysis and running time

	6 Conclusions
	A Appendix: Efficient CPD computations for MDS tensor
	A.1 GAGE-EVD
	A.2 Sparsity aware GAGE

	Acknowledgments
	References
	A Link prediction
	B Sensitivity analysis




