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Engineering Mechanics

| | I
Rigid Body Deformable Body Fluid
Mechanics Mechanics Mechanics

L Strength of
Materials

Statics

Dynamics
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Concept of Stress

« The main objective of the study of mechanics
of materials is to provide the future engineer
with the means of analyzing and designing
various machines and load bearing structures.

Both the analysis and design of a given
structure involve the determination of stresses
and deformations. This chapter is devoted to
the concept of stress.
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Pin Shearing Stresses
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Shearing Stress

Shearing Stress Examples

Pin Bearing Stresses

Stress in Two Force Members

Stress on an Oblique Plane

Maximum Stresses

Stress Under General Loadings

State of Stress

Factor of Safety
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Definition: Mechanics of materials is a branch of applied
mechanics that deals with the behaviour of solid bodies

subjected to various types of loading

T
N1l LTI

\

Torsion (twisted)  Shearing

Compression Tension (stretched) Bending

o DeWolf
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- stress and strain . =

%musmn(z)
e deformation and

displacement

» elasticity and
Inelasticity

» load-carrying
capacity

Design and analysis of mechanical
and structural systems
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Examination of stresses
and strains inside real
bodies of finite dimensions
that deform under loads

In order to determine
stresses and strains we use:

Physical properties of
materials

Theoretical laws and
concepts

Beer ¢ Johnston e

DeWolf
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MECHANICS OF MATERIAIL S

Mechanics of Materials

External Loads produce Internal Loads
Internal Loads cause a body to deform
Internal Loads cause stress

How much does body deform?
How much stress?

Is 1t Safe at this stress?

How big should It be so stress is low
enough?

] [V] [A]

§§§
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Statics Review: External Loads

[ Y

Craall
Stirarl
trea

ontactarea;
as a point

Concentrated force
1dealization

= 0

Fris One body
resultant of acting on
w(s) = area another
nder curve, Surface
acts at force

centroid

<]

>

Acting on
arrow area

_ One body

Body acting on
force another w/o
cQlg

Linear distributed
load 1dealization
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External Loads:

e External loads can be Reaction Loads or
Applied Loads!

« Must solve for all unknown external loads
(reaction loads) so that internal loads can be

solved for!

* Internal loads produce stress, strain,
deformation — SofM concepts!
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Support Types and Reactions (2D):

Supports

Reactions

N

Rope or Cable Spring

A Collinear Force

p

Contact with a Smooth Surface

Ié

A Force Normal
to the Supporting Surface

Contact with a Rough Surface

Two Force Coinponents

(oY t

Pin Support

Vv

ta,

Two Force Components
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FECHANICS OE MATERIAL S
Support Types and Reactions (2D):

Table 5.1

Supports

Reactions

R )
Roller Support

B
[

-

Equivalents

A Force Normal
to the Supporting Surface

Constrained Pin or Shider

Y 4

th

A Normal Force

Fixed (Built-in) Support

I,

Two Force Components
and a Couple
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Pin connections
allow rotation.
Reactions at pins
are forces and
NOT MOMENTS.

Degrees of
Freedom


contents.ppt

] [V] [A]

§§‘§

Static Equilibrium

e Vectors: 2F=0 >M

« Coplanar (2D) force systems:

SF, =0
>F, =0

M, =0 -

 Draw a FBD to account for
ALL loads acting on the body.

Perpendicular
to the plane
containing the
forces
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STATICS: You need to be able to...

« Draw free-body diagrams,

Know support types and their corresponding
reactions,

Write and solve equilibrium equations so that

unknown forces can be solved for,

Solve for appropriate internal loads by taking cuts
of inspection,

Determine the centroid of an area,

Determine the moment of inertia about an axis
through the centroid of an area.
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Internal Reactions

F, * Internal reactions are
necessary to hold body
together under loading.

™\ » Method of sections - make
section 3 cut through body to find
Internal reactions at the
point of the cut.

] [V] [A]

§§§
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FBD After Cut

« Separate the two parts

‘Q\\ /‘1//44 and draw a FBD of either

side
» Use equations of
equilibrium to relate the

r, external loading to the
Internal reactions.

] [V] [A]

§§‘§
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Resultant Force and Moment

 Point O Is taken at the
centroid of the section.

If the member (body) Is
long and slender, like a

rod or beam, the
section Is generally
taken perpendicular to
the longitudinal axis.

Section iIs called the
Cross section.
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m
Q
=3
o
S

Components of Resultant

 Components are

Torsional
. ﬂff"j‘i‘i“fﬂ; found

"\ & NF‘;‘E? perpendicular &

| & N -

A r, parallel to the

| sier  SECtION plane.
@ : Force
g Lo v
< * |nternal reactions
E are used to
> F)

determine stresses.



contents.ppt

uonip3

PAYL

V
-

AN

\‘ A Beer e Johnston e

DeWolf

Coplanar Force System

section

F,

Start with internal system
of forces as shown below
to get proper signs for V,

N and M.
y.

. M, Bending
Moment

0 o—~—)» —x
N

\) Normal
Different than vV Force

Fl 1-3 b Force
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Example: Find the vertical reactions at A and B
for the shaft shown.

uonip3g

PAYL
V
-
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" 0.125 mil0.100 m

Comment on dashed line around the distributed load.
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(800 N/m)(0.150 m) = 120
225 N

Equilibrium ‘e

Equations I ‘ ‘
0.275 m —H
0.125m | 0.100 m

Ay By

& 3M, =0=.400m(B,)-120N(.275m) - 225N(.500m)

~ —120N(.275m)— 225N(.500m)
Y —.400m

B, =363.7N T
+1 SFy =0 = Ay —120N +363.75N— 225N
A, = -18.75N

A, =18.7N

B
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Review of Statics

d = 20 mm

800 mm

« The structure is designed to
support a 30 kN load

The structure consists of a
boom and rod joined by pins
(zero moment connections) at
the junctions and supports

Perform a static analysis to
determine the internal force in
each structural member and the
reaction forces at the supports
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Structure Free-Body Diagram

» Structure is detached from supports and
the loads and reaction forces are indicated

« Conditions for static equilibrium:
> Mc =0=A(0.6m)—(30kN)0.8m)
A, = 40kN
S F, =0=A +C,
C, =—A = —40kN
> Fy=0=A,+Cy—30kN =0

&
R
e

Ay +Cy =30kN

. Ay and Cy can not be determined from
these equations
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Component Free-Body Diagram

* In addition to the complete structure, each
component must satisfy the conditions for
static equilibrium

» Consider a free-body diagram for the boom:
> Mg =0=-A,(0.8m)

A, =0
y
substitute into the structure equilibrium
equation
Cy =30kN

* Results:
A=40kN - Cy, =40kN <« C, =30kNT

Reaction forces are directed along boom
and rod
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Method of Joints

» The boom and rod are 2-force members, i.e.,
the members are subjected to only two forces
which are applied at member ends

For equilibrium, the forces must be parallel to
to an axis between the force application points,
equal in magnitude, and in opposite directions

Joints must satisfy the conditions for static
equilibrium which may be expressed in the
form of a force triangle:

> Fg =0
4 5 3
Fag =40kN  Fgc =50kN
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Quick answer is welcomed!
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Stresses types

Stress

Bending

Direct /
Transverse

J

Torsion
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Normal stresses

ONormal — OAxial T GBrf:nding

_P _ Normal load
OAxial ~ A~ Cross sectional area

M.c
I

csBe:nding

Where

M: Bending moment at a specific point (if not mentioned, take the maximum
value).

C:distance from centroid to the point you calculate stress at it, is

calculated from the cross section (if not mentioned, take the maximum value).

[: Moment of inertia of the cross section.
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Can the structure safely support the 30 kN
load?

From a statics analysis

F,g = 40 KN (compression)
Fgc = 50 kN (tension)

At any section through member BC, the
Internal force is 50 kN with a force intensity
or stress of

P  50x10°N

Ope =— = =159 MPa
A 314x10%m?

From the material properties for steel, the
allowable stress is

Ol = 165 MPa

Conclusion: the strength of member BC is
adequate

] V] [A] [Z]

§§‘§
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 Design of new structures requires selection of
appropriate materials and component dimensions
to meet performance requirements

 For reasons based on cost, weight, availability,
etc., the choice is made to construct the rod from
@y aluminum (o,,= 100 MPa). What is an
- appropriate choice for the rod diameter?

3
ae P O0I0N _ 00.1076m2

o 100x108Pa

= 252x10"%m = 25.2mm

4A \/4(500><10_6m2)

T T

] V] [A] [Z]

« An aluminum rod 26 mm or more in diameter Is
adequate

§§‘§
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Tension stress

Cross-sectional area of a tension member

i

ol I
Uniform normal stress

- T

p
E - |L ,
A =

Il-"In Moy

allow

Condition: (b)

The force has a line of action that passes
through the centroid of the cross section.

Al
>

N _/ /
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Tension stress

Determine the max. average normal stress in the bar
when subjected to the loadings as shown below.

Bar width = 35 mm, thickness = 10 mm

IS mm

] [V] [A]

§§‘§
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Tension stress

Maximum average normal stress

* IF the internal force P and x-sec area A were constant along
the longitudinal axis of the bar, then normal stress ¢ = P/A

is also constant o
e
b | B T

If the bar is subjected to several external loads along its axis,
change in x-sectional area may occur. Thus, it is important to
find the maximum average normal stress,
A 9 kN
22 kN

:l;\,_._@ 1 4'; T ‘!é £ \,_..‘,h—»

Y KN

35 mm

] [V] [A]

* To determine that, we need to find the locafion where ratio
P/A is a maximum

§§‘§


contents.ppt

[ 1/ k Beer ¢ Johnston ¢ DeWolf

Tension stress

Maximum average normal stress
* Draw an axial or normal force diagram N-D

(
A
12 kN b |
2 ) -f_
- .

4—4‘-_0

|

|
Pll‘l.\')
|
|

IS mm

}' | 1'
I

L

12

Sign convention:
— P 1s positive (+) 1f 1t causes tension in the member
— P 1s negative (=) 1f 1t causes compression
* Identify the maximum average normal stress from the
plot

_—— e v
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Tension stress

Maximum Average normal stress

PBC

30(10°) N

4 (0.035m)(0.010 m)

14}

= 85.7 MPa

min-.,

Pl

@—5 W kN
15 mm =" K

~—%5.7 MPa

(d)
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Combined stress example (Normal stresses)

2m

A steel beam with a tensile strength of
700 MPA is loaded as shown.
Assuming that the beam is made from
hollow square tubing with the
dimensions shown will the loading in
the x direction exceed the failure
stress?
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1=1/12 x (0.024)- 1/12 x (0.014) m?
=1.25 x 108 m*

A=0.022-0.01° m?
=0.0003 m?

Beer ¢ Johnston ¢ DeWolf
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K 160kN

240kN.m ‘
120N

EENEEEN
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« Stress due to axial loading

. _F_ 160
&l A 0.0003

kPa =533.33MPa

« Stress due to bending

__Mc _240x0.01
bend 1 1.25%x10°®

ANS: Total stress greater than failure stress
therefore failure will occur

kPa=1920MPa
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Applied transverse forces (P and P)
to the member AB produce internal
forces at section C which are called
shearing forces.

* The corresponding average shear

stress is,

P

T —
ave
A4

* Shear stress distribution varies from zero at
the member surfaces to maximum values that
may be much larger than the average value.



contents.ppt

[ 1/ k Beer ¢ Johnston ¢ DeWolf

Direct shear stress

Average shear stress over each section is:

|
.. = average shear stress at section, 1 T
v

assumed to be same at each v

point on the section
A, = sheared area

- of section

] V] [A] [Z]

This loading case is known
as direct or simple shear

§§‘§
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Direct shear stress

uonip3g

PAYL
V
-
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Direct shear stress

Single shear (Single Shear Connection)

« Steel and wood joints shown below are
examples of single-shear connections, also

known as lap joints.

Since we assume members are thin, there are
no moments caused by F

()
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Direct shear stress

Double shear (Double Shear Connection)

* The joints shown below are examples of double-shear
connections, often called double lap joints.

For equilibrium, x-sectional area of bolt and

bondi:n¥ surface between two members subjected
to double shear force, V' = F/2

Apply average shear stress equation to determine
average shear stress acting on colored section 1 (d).
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Direct shear stress

Cross-sectional area of a connecter
subjected to shear

Uniform shear stress

— T‘.LI]n'u.

N

Assumption:

If bolt is loose or clamping force of bolt is unknown,
assume frictional force between plates to be
negligible.
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Direct shear stress

Required area to resist shear caused by axial load

* Although actual shear-stress distribution along rod
difficult to determine, we assume 1t 1s uniform.

Thususe 4 =V /1, . to calculate /, provided d and
1s known.

allow

Tallow

Uniform shear stress
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Bearing stress

 Bolts, rivets, and pins create
stresses on the points of contact
or bearing surfaces of the
members they connect.

* Corresponding average force
intensity is called the bearing
stress,

_P_P
A td
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Bearing stress

Required area to resist bearing

* Bearing stress 1s normal stress produced by the
compression of one surface asainst another
Assumptions:

1. (0,).1 Of CcONCrete <
(0p) 110w Of Dase plate

Bearing stress Is o
unlformly dIStrIbUted [.Tnil'{)rlnr::.‘r:lnL
bet\Neen plate and stress distribution
concrete

] [V] [A]

§§‘§
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Stress analysis & design

(‘>/ d =25 mm
- ¢

MM PRONT VIEW

800 mm ——N\———e=
QO W KN

END VIEW

m ~ 1 20 mm

« Study the stresses in
the members and
connections of the
structure shown.

* Calculate maximum
normal stresses in 45
and BC, and the
shearing stress and
bearing stress at each
pinned connection

« Knowing:
F ;=40 kN (compression)
Fp-=50 kN (tension)
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Stress analysis & design

TOF VIEW OF ROD BC

* The rod 1s in tension with an axial force of 50 kN.

» At the rod center, the average normal stress in the

circular cross-section (4 =314 X107°m?) 1s Gz~ = +159
MPa. (o= F/ (nd*/4) =50 000 x 4/ (0.02%)=159155000
kN/m?)

* At the flattened rod ends, the smallest cross-
sectional area occurs at the pin centerline,

A=(20mm)40mm—25mm)=300x10"°m>

3
-q
C5c ond == =—200 N __167MPa

A 300x10%m?

» * The boom 1s 1n compression with an axial force of
40 kN and average normal stress of —26.7 MPa.

wov e The minimum area sections at the boom ends
are unstressed since the boom is in
comnression.
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Stress analysis & design

Pin at C, » The cross-sectional area for pins at 4, B,
Sing shear. and C are equal.

75 \2
A=mr =7 = ;11111! —491x10°°

.~— r.II 25 mm

» » The force on the pin at C is equal to the

force exerted by the rod BC,

5 3
T e = 2= 20X 10 \I,;, ~102MPa

4 491x10~

, * The pin at 4 1s in double shear with a
Pin at A, _ ) ,
total force equal to the force exerted by
PR Double shear.
- the boom 4B,

_ _P__ 20W
AT 4 491x10~%m2

] [V] [A]

= 40.7MPa

§§‘§
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Stress analysis & design

TFip= 206N g * Divide the pin at B into sections to determine
the section with the largest shear force,

Pz =15kN
Py =25kN (largest)

 Evaluate the corresponding average
shearing stress,
Ps 25kN

A  491x107°m-~

B ave =
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Stress analysis & design

* To determine the bearing stress at A in the boom
AB, we have r = 30 mm and 4 = 25 mum,

cj = F_ 40N =53.3MPa

td  (30mm)25mm)

* To determine the bearing stress at 4 in the bracket,
we have r=2(25 mm) = 50 mm and 4 =25 mm,

P 40kN

= = 32.0MPa
td  (50mm)25mm)

D'b:

] [V] [A]

§§‘§
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Stress on an obligue plane

Pass a section through the member forming
an angle € with the normal plane.

From equilibrium conditions, the
distributed forces (stresses) on the plane
must be equivalent to the force P.

Resolve P into components normal and
tangential to the oblique section,
F =Pcosé V =Psiné

The average normal and shear stresses on
the oblique plane are

i _iPeost P 7
= = =—1€08" @

49 o

cosé
V. _Psmn@ P
45 4y

cosé

(o3

¢ — sin@cosé
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Stress on an obligue plane

Normal and shearing stresses on an oblique

plane

P 3 i
C=—=C0s @ tT=—-s1m6fcosl

T The maximum normal stress occurs when the
) Stvessasifar 0 0 reference plane 1s perpendicular to the member

axis,
g @'= PRA, p
Om=—"" =0

4y

(c) Stresses for = 45° The maximum shear stress occurs for a plane at
7 Taim B4 + 45° with respect to the axis,

7
< Tip = isin 45 cos4s = P .
a'= PI2A, AO 7AO

(d) Stresses for @ = —45°
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Stress on an obligue plane

Determine average normal stress and average
shear stress acting along (a) section planes a-a,
and (b) section plane b-b.

a : 20 mm

800N ! g

20 mm
a

Depth and thickness = 40 mm
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Stress on an obligue plane

Part (a): Internal loading

Based on free-body diagram, Resultant
loading of axial force, P =800 N



contents.ppt

[ A k ' \‘ A Beer ¢ Johnston e

DeWolf

Stress on an obligue plane

Part (a): Average stress
Average normal stress, o

A 800 N — 500 kPa

A (0.04 m)(0.04 m)

500 kPa

(€)
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Stress on an obligue plane

Part (a): Internal loading
No shear stress on section, since shear force at

section 1S zero.

500 kPa
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Stress on an obligue plane

uonip3

Part (b): Internal loading
+ Y F_=0; =800 N+ Nsin 60° + V cos 60° =0

+ Y F,=0;  Vsin60° —Ncos60° =0

v ,"‘J

W
800 N <
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Stress on an obligue plane

Part (b): Internal loading
Or directly using x’, y* axes,

) F.=0; N=800N cos30°=0

> LF,=0; V=800 N sin 30° =0

y oy

800 N -
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Stress on an obligue plane

uonip3

Part (b) Average normal stress

N 692.8 N

— — = : =3
o= 1 T (004 my0.04 s 60%) D

800 N - 800 N
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Stress on an obligue plane

uonip3

Part (b):Average shear stress

V 400 N
T = —
&4 (0.04 m)(0.04 m/sin 60°)
Stress distribution shown below

"
— 217 kPa

375 kPa
(e)
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Factor of safety & allowable stress

Structural members or machines Factor of safety considerations:

must _bE‘ designed such that the * uncertainty n material properties
working stresses are less than the « uncertainty of loadings

ultimate strength of the material. » uncertainty of analyses

number of loading cycles
types of failure

maintenance requirements and
deterioration effects

importance of member to integrity of
whole structure

risk to life and property

influence on machine function

FS = Factor of safety

Fs-%u _ ultimate stress

Call ~ allowablestress
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Factor of safety & allowable stress

When designing a structural member or
mechanical element, the stress 1n 1t must be
restricted to safe level

Choose an allowable load that 1s less than the
load the member can fully support

One method used 1s the factor of safety (F.S.)

in
F

allow

F.S. =

] [V] [A]

§§‘§
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Factor of safety & allowable stress

If load applied 1s linearly related to stress
developed within member, then F.S. can also
be expressed as:
O fail Ltail
E.S.= F.S.=

Jallcrw ral]DW

In all the equations, F.S. 1s chosen to be greater than 1,
to avoid potential for failure

Specific values will depend on types of material used
and 1ts mtended purpose

] V] [A] [Z]

§§‘§
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Factor of safety & allowable stress

e To determine area or dimensions of section
subjected to a normal force, use

P

A=
O

allow

« To determine area or dimensions of section
subjected to a shear force, use

v

VE

Tallow

] [V] [A]

§§‘§
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