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Abstract 

Calculation of uncertainty intervals for skewed distributions - 

Application in chemical analysis with large uncertainties  

A measurement result 𝑥 is normally reported, with an expanded uncertainy 𝑈 at a stated 

condifidence level, as  𝑥 ± 𝑈. When the distribution of results are skewed the result 𝑥 will be 

reported with a skewed interval as 𝑥 − 𝑈𝑙 to 𝑥 + 𝑈𝑢 where 𝑈𝑙 and 𝑈𝑢 are the lower and upper 

limits of uncertainty. It is concluded that skewness needs to be taken into account in order to 

report more correct uncertainty interval for results at relative standard deviations exceeding 

approximately 15 to 20 %. A power transformation, 𝑥𝐵, that will transfer (many) measurement 

results that have a skewed distribution to an approximate normal distribution is suggested in 

order to report more correct uncertainty intervals. The parameter 𝐵 needs to be optimized and 

the optimized value depends on the distribution of the measurement results. The 

transformation is characterized and studied using Monte Carlo simulations. Optimization of 𝐵 

can be performed based on modelling of results, on judgement based on experience or on 

experimental results. Optimization based on experimental results is difficult since a very large 

data set is needed to get a reliable value of 𝐵. Two important B values are 𝐵 equal to 1 that 

corresponds to an approximate normal distribution of the original measurement results, and 

B approaching 0 that corresponds to an approximate log-normal distribution of the original 

measurement results. An expression for calculation of uncertainty intervals when using 

transformation based on 𝑥𝐵 with an optimized 𝐵 is given, and compared with other types of 

uncertainty intervals where it is assumed that measurement results have a normal or a log-

normal distribution. It is also suggested how to combine uncertainty contributions with 

different skewness. Implementation of the working approach is demonstrated with three 

examples from chemical analysis.  
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 Introduction 
The uncertainty of results from many types of measurements is most often expected and 

assumed to be described by a normal distribution i.e. a symmetric distribution. Measurement 

uncertainties are typically given as ±U where U is the expanded uncertainty (often at 95 % 

confidence level) calculated assuming a normal distribution of the result. The assumption of a 

normal distribution is based on the central limit theorem [1, 2] that states that the probability 

distribution for 𝐴, when calculated according to a measurement model:  

𝐴 = 𝐴1 + 𝐴2 + …….+𝐴𝑛 (1)  

where 𝐴1, 𝐴2, ……. 𝐴𝑛 are independent random variables, will approach a normal distribution 

when n increases. Hence, it is assumed that the result of the measurement is calculated mainly 

by addition and subtraction of a number of variables. However, in chemical analysis, as well as 

in many other types of measurements, multiplication and division are important mathematical 

steps. A logarithmic transformation will convert multiplications in the model equation to 

additions (divisions to subtractions) and the central limit theorem will apply for the 

logarithmic data. The probability distribution for 𝐴, when calculated according to a 

measurement model with only multiplications  

𝐴 = 𝐴1 × 𝐴2 × …….× 𝐴𝑛  (2)  

will approach a log-normal distribution when n increases. This distribution is asymmetric as 

shown to the left in Fig. 1. When taking the logarithm of a log normal distribution the 

transformed data will be a normal, symmetric distribution as shown to the right in Fig. 1 with 

the log10 scale.  

 

Figure 1. Fundamental characteristics of the normal and log-normal probability distributions. 

The log-normal distribution is skewed (left) but becomes symmetric (right) after taking the 

logarithm of the values. For comparison a normal distribution, that is symmetric, is included 

in the figure.   
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The log-normal distribution is skewed but becomes symmetric after taking the logarithm of 

the values. For comparison a normal distribution, that is symmetric, is included in the figure. 

For a normal distribution, the coverage probability of different intervals are [3, 4]:  

  𝑥 −   to 𝑥 +         68.3 %  

  𝑥 −    to 𝑥 +      95.5 %  

  𝑥 − 3  to 𝑥 + 3    97.3 %  

where 𝑥  is the mean and   is the standard deviation. For a log-normal distribution the 

corresponding intervals in the original space are [3, 4]:  

  𝑥      to 𝑥  ×      68.3 %  

  𝑥       2 to 𝑥  ×     2   95.5 %  

  𝑥       3 to  𝑥  ×     3   97.3 %  

where 𝑥  = 10𝑥̃𝑙𝑜𝑔   where 𝑥̃𝑙    
 is the median of log10 𝑥 and   = 10𝑠𝑙𝑜𝑔   where  𝑙    

 is the 

standard deviation of log10 𝑥. A more detailed description of the characteristics of the two 

distributions and their importance is available in the literature [3, 4].  

In the following discussion the standard deviation,  , is assumed to be equal to the standard 

uncertainty, 𝑢 [1, 2]. Often a log-normal distribution can be approximated with a normal 

distribution. The coefficient of variation (𝐶𝑉) is often used to decide if this approximation is 

valid. For 𝐶𝑉 below 20 % the difference in shape and skewness between the two distributions 

is small [3], and a normal distribution approximation can be used. At larger 𝐶𝑉, or relative 

standard uncertainties, the skewness of the results needs to be taken into account, and this is 

typically performed by assuming a log-normal distribution [5-9]. However, sometimes the 

log10 𝑥 transformation is not sufficient to obtain symmetry and we here propose a more general 

transformation. Though relative standard uncertainties are often smaller than 20 %, it is 

possible to encounter larger standard uncertainties. For instance, sampling in chemical 

analysis can contribute substantially to the overall uncertainty and to skewness in the 

probability distribution of the result [5, 6, 8, 9].  

Distributions of these large uncertainties are rarely addressed in the literature [7]. In 

“Evaluation of measurement data - Guide to the expression of uncertainty in measurement” 

(well-known as “GUM”) [1, 2] only additive measurement errors are considered, and it is 

assumed that the probability distribution can be approximated with a normal distribution (or 

a t-distribution). It is also stated that the GUM uncertainty framework might not be 

satisfactory when the probability distribution for the output quantity is either asymmetric, or 

not a Gaussian or a t-distribution1. In a Eurachem guide [10] and a GUM supplement [11], 

however, Monte Carlo methods that can be used to study the distribution of the output quantity 

 
1 In section G5.2 of GUM asymmetry is discussed: The alternative is to give an interval that is symmetric in 
probability (and thus asymmetric in U): the probability that Y lies below the lower limit y − U− is equal to the 

probability that Y lies above the upper limit y + U+. But in order to quote such limits, more information than 

simply the estimates y and uc(y) [and hence more information than simply the estimates xi and u(xi) of each 

input quantity Xi] is needed.  
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when all input quantities can be well described are presented. Example is given of an output 

asymmetric probability distribution and reporting of an expanded asymmetric interval. Hence, 

it is somewhat doubtful to consider large asymmetric uncertainties to be covered by the scope 

of GUM.  

In this work is studied how skewness in measurement results can be handled with focus on 

chemical analysis with large uncertainties. A transformation often used to stabilize variance 

[12] is suggested in the following section that 1) will transform skewed distributions to a 

symmetric distribution that can be assumed to be normal, and 2) using an expression for back-

transformation an asymmetric uncertainty interval can be calculated with a correct confidence 

interval, e.g. 95 %. For comparison, results obtained when using no transformation and 

transformation using log10 𝑥 are also included.  
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 List of symbols and abbreviations 
 

𝐴  Variable with a normal probability distribution  

𝐵  Parameter in transformation (𝑥𝐵)  

𝐵 𝑝𝑡  Optimized 𝐵  

𝐶  Concentration  

𝐶𝑉  Coefficient of variation (in %)  

𝐶𝑉𝑡𝑟𝑎𝑛𝑠  Coefficient of variation in transformed space using 𝑥𝐵 transformation  

𝐹2.5 %  Fraction of data points below 𝑥 − 1.96  (%)  

𝐹97.5 %  Fraction of data points above 𝑥 + 1.96  (%)  

𝑘  Coverage factor for a given probability  

𝑛  Number of data  

 𝑟𝑒𝑙  Relative standard deviation  

 𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠  Relative standard deviation in transformed space using 𝑥𝐵 transformation  

   Sample standard deviation  

 𝑙    
  Sample standard deviation after transformation using log10 𝑥  

 𝑙  𝑒
  Sample standard deviation after transformation using loge 𝑥  

𝑥  Data in the original space  

𝑥𝑡𝑟𝑎𝑛𝑠  Transformed data  

𝑥   Average (sample mean)  

𝑥̃  Median  

𝑈𝑙  Lower limit of an uncertainty interval for a measurement result 𝑥  

𝑈𝑢  Upper limit of an uncertainty interval for a measurement result 𝑥  

𝑈𝐹   Uncertainty factor  

𝛾  Skewness  

𝜇𝐴  Mean of random variable 𝐴  

𝜎𝐴  Standard deviation of variable 𝐴  
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 Model  
Transformation of original data is performed according to  

𝑥𝑡𝑟𝑎𝑛𝑠 = 𝑥𝐵  (3)  

where 𝑥𝑡𝑟𝑎𝑛𝑠 and 𝑥 are the transformed and original data, respectively, and 𝐵 is a parameter 

that is optimized with the goal that the transformed data should have a symmetric distribution, 

i.e. having a skewness that is close to 0. Skewness, 𝛾, is here calculated as  

𝛾 =
𝑛

 𝑛−1 × 𝑛−2 
∑ (

𝑥𝑡𝑟𝑎𝑛𝑠,𝑖−𝑥 𝑡𝑟𝑎𝑛𝑠

𝑠𝑡𝑟𝑎𝑛𝑠
)
3

𝑛
𝑖=1   (4)  

where 𝑛 is the number of data, 𝑥𝑡𝑟𝑎𝑛𝑠,𝑖 is the transformed individual data, 𝑥 𝑡𝑟𝑎𝑛𝑠 is the mean of 

transformed data, and  𝑡𝑟𝑎𝑛𝑠 is the standard deviation of the transformed data. The optimized 

𝐵 will be denoted 𝐵 𝑝𝑡.  

Back-transformation of transformed data is obtained by  

𝑥 = 𝑥𝑡𝑟𝑎𝑛𝑠
1 𝐵𝑜𝑝𝑡  (5)  

Note that for 𝐵 𝑝𝑡 < 0, the order of data in the transformed space will be opposite to the order 

of data in the original space. Hence, when calculating a confidence interval the lower limit of 

the interval in the transformed space corresponds to the upper limit in the original space.  

Power transformation according Eq. 3 and similar equations (e.g. equation used in Box-Cox 

transformation) are well-known to stabilize variances and transfer data to more normal 

distributed data. For instance, transformation according to Eq. 3 has been used in variance 

stabilizing transformation where 𝐵 is adjusted to give a minimal dependence of variance on 𝑥 

[12]. The Box-Cox transformation is often written as  

𝑦 𝜆 = {

𝑦𝜆−1

𝜆
     𝑖𝑓 𝜆 ≠ 0

ln 𝑦     𝑖𝑓 𝜆 = 0 

  
(6)  

 

and is used to transform skewed data in many applications prior to use of statistical analysis 

tools where normal distributed data is needed [13]. This transformation is constructed to 

obtain the limit ln 𝑦 when  approaches zero. However, for our purposes the simple power 

transformation is regarded as sufficient.  

In order to illustrate and characterize the transformation procedure, probability distributions 

of transformed data with different values of 𝐵 for an original normal distribution and an 

original log-normal distribution are shown in Fig. 2(a) and 2(b), respectively.  
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Figure 2. Probability distributions of transformed data using different values of 𝐵 for data 

that have an original (a) normal distribution, (b) log-normal distribution, and (c) distribution 

somewhere “between” a normal and a log-normal distribution. In order to emphasize the 

symmetry and asymmetry in the diagrams a dashed line has been added to mark the 

probability distribution maximum. In addition, values for skewness (𝛾) are also given for 

each distribution. 𝐵 = 1 shows the original distributions.  

 

Note that for a normal distribution the skewness (𝛾) will approach 0 when 𝐵 approaches 1, and 

𝑥𝑡𝑟𝑎𝑛𝑠 will approach 𝑥. For a log-normal distribution 𝛾 will approach 0 when 𝐵 approaches 0. 

However, for 𝐵=0, the standard deviation will be infinitely small since 𝑥𝑡𝑟𝑎𝑛𝑠 will be equal to 1 

for all data. Hence, for data that originally has a distribution that is somewhere “between” a 

normal and a log-normal distribution it can be expected that 0 < 𝐵 𝑝𝑡 ≤ 1 when 𝐵 has been 

optimized. A probability distribution of transformed data for an original distribution that is 

somewhere “between” a normal and a log-normal distribution with different values of 𝐵 is 

shown in Fig. 2(c). The data in Fig. 2(c) were generated using an arbitrary chosen equation  

𝐴1 ×
𝐴2+𝐴3

𝐴4+𝐴5
× 𝐴6 + 𝐴7 − 𝐴8  (7)  

where the variables 𝐴1, 𝐴2, ….. and 𝐴8 have a normal probability distribution with mean values 

equal to 1, and standard deviations 𝐴 
, 𝐴2

, …., 𝐴6
 = 0.1 and 𝐴7

, 𝐴8
 = 0.05. These values 

were arbitrary chosen to generate data that have a distribution “between” a normal and a log-
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normal distribution suitable for illustrating how the transformation works. For the 

transformed data, 𝛾 will be close to 0 (corresponding to a symmetric distribution) when 

𝐵 = 0.44. For 𝐵 values < 0.44, 𝛾 will be negative and 𝛾 will become more negative when 𝐵 

approaches 0. For 𝐵 values > 0.44, 𝛾 will be positive and 𝛾 will increase when 𝐵 approaches 1. 

Note that in Fig. 2(a) to (c), distributions where 𝐵 = 1 will be equal to the original distributions.  

Clearly, by optimizing the value 𝐵 for Eq. 3, data can be transformed to data that have a 

symmetric distribution.  

 

 

 Calculations  
All calculations are performed using Excel software (Office 365, Microsoft). Random data with 

a normal probability distribution were generated using Excel function 

NORM.INV(RAND();mean;standard deviation). Random data with a log-normal probability 

distribution were generated as 10NORM.INV(RAND();mean;standard deviation). Random data with a 

rectangular distribution were generated using RAND(). Random data with a probability 

distribution somewhere “between” a normal and log-normal probability distribution were 

generated by multiplying, dividing, adding or subtracting random data with normal probability 

distributions generated as described above. All simulations were based on 106 data if not 

otherwise mentioned.  

Optimization of 𝐵 was obtained by utilizing Solver (Excel add-in program) with the constraint 

𝐵 ≥ 0.0001 to prevent that 𝐵 will reach 0 in the optimization. Start value for B is not critical, 

and here 0.5 was used as a start value. If optimization resulted in 𝐵 = 0.0001, a second 

optimization step was performed with the constraint 𝐵 ≤ −0.0001 and a start value of -0.5. 

Settings used in the Solver optimization are given in Table 1.  
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Table 1. Settings used in Solver.  

Set objective  Cell containing value for absolute skewness  

To  Min  

By changing variable cells  Cell containing value for parameter 𝐵(1)  

Subject to the constraints  

Cell containing value for parameter 𝐵(1): >= 0.0001  

or  

Cell containing value for parameter 𝐵(1): <= -

0.0001  

(Second setting is used if optimization using the 

first setting results in 𝐵(1) = 0.0001).  

Make unconstrained variables non-negative  Not active  

Select a solving method  GRG (Generalized reduced gradient) Non-linear  

Precision (All methods)  0.000001  

Convergens (GRG Non-linear)  0.0001  

Derivatives (GRG Non-linear)  Forward  

(1) 𝐵 is a parameter in an equation used to transform data.  

 

Some of the calculations below, including random data generation, were also performed using 

the software R (ver. 4.0.0) [14]. Identical results were obtained showing that the Excel 

calculations have adequate accuracy.  

Analysis of variance (ANOVA) was performed using RANOVA2 (a stand-alone program 

running in Microsoft Excel) available from Royal Society of Chemistry (RSC) website [15].  

 

 

 Results  

5.1 Characterization of the transformation 

procedure  

In order to demonstrate the applicability of the transformation procedure, several data sets 

were processed, and the results are given in Table 2. Parameters describing the distributions 

for the original data i.e. without transformation are given first, namely, 𝐶𝑉, 𝛾, fraction of data 

points below 𝑥 − 1.96  (denoted as 𝐹2.5 %), and fraction of data points above 𝑥 + 1.96  (denoted 

as 𝐹97.5 %). Then, parameters describing the distribution after transformation using 𝑥𝐵𝑜𝑝𝑡 
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including 𝐵 𝑝𝑡, skewness (𝛾), 𝐹2.5 %, and 𝐹97.5 % are given. For comparison, parameters 

describing the distribution after transformation using log10 𝑥 are also given. The different data 

sets included 106 data points and were generated as described in Table 2 where the variables 

𝐴1, 𝐴2, ….. where randomly generated data that had a normal probability distribution with 

means 𝜇𝐴 
, 𝜇𝐴2

, ….. and standard deviations 𝜎𝐴 
, 𝜎𝐴2

, ….. The parameters for simulations are 

chosen to only generate positive values.  
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Table 2. Parameters describing the probability distribution 1) original data i.e. without transformation, 2) after transformation using 𝑥𝐵𝑜𝑝𝑡, and 

3) after transformation using log10 𝑥 for different data sets.  

Data 

set  
Way to generate data set  

Original data i.e. without transformation  
After transformation            

using 𝒙𝑩𝒐𝒑𝒕  

After 

transformation 

using log10 𝒙 

Distribution of data 

set  

𝑪𝑽 of 

data 

set (%) 

𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

𝑩𝒐𝒑𝒕 𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

1  
𝐴1  

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.1  
Normal distribution  10  6×10-3  

2.49  

2.51  
0.98  -5×10-8  

2.51  

2.49  
-0.30  

3.27  

1.65  

2  
10𝐴   

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.1  

Log-normal 

distribution  
23  0.72  

0.56  

4.01  
-0.004  5×10-9  

2.50  

2.49  
3×10-3 

2.49  

2.50  

3  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴20  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴2 
 = 1 

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴2 
 = 0.02  

“Between” normal and 

log-normal 

distribution  

9.0  0.25  
1.78  

3.13  
0.065  -1×10-9  

2.52  

2.49  
-2×10-2  

2.57  

2.45  

4  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴20  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴2 
 = 1 

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴2 
 = 0.05  

“Between” normal and 

log-normal 

distribution  

23  0.65  
0.69  

3.90  
0.055  -1×10-7 

2.51  

2.49  
-4×10-2 

2.61  

2.39  

5  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴20  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴2 
 = 1 

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴2 
 = 0.1  

“Between” normal and 

log-normal 

distribution  

47  1.4  
0  

4.61  
0.053  -3×10-8 

2.51  

2.51  
-7×10-2  

2.71  

2.30  

6  

𝐴1 × 𝐴2  

𝜇𝐴 
, 𝜇𝐴2

 = 1  

𝜎𝐴 
, 𝜎𝐴2

 = 0.1  

“Between” normal and 

log-normal 

distribution  

14  0.21  
1.87  

3.04  
0.51  -2×10-7 

2.48  

2.50  
-0.22  

3.06  

1.87  
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Data 

set  
Way to generate data set  

Original data i.e. without transformation  
After transformation            

using 𝒙𝑩𝒐𝒑𝒕  

After 

transformation 

using log10 𝒙 

Distribution of data 

set  

𝑪𝑽 of 

data 

set (%) 

𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

𝑩𝒐𝒑𝒕 𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

7  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴5  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴5
 = 1  

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴5
 = 0.1  

“Between” normal and 

log-normal 

distribution  

23  0.54  
0.92  

3.74  
0.20  -3×10-8  

2.51  

2.50  
-0.14  

2.88  

2.11  

8  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴10  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴  
 = 1  

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴  
 = 0.1  

“Between” normal and 

log-normal 

distribution  

32  0.89  
0.21  

4.25  
0.10  -7×10-9  

2.50  

2.51  
-0.1  

2.76  

2.22  

9  

𝐴1 × 𝐴2 × ……× 𝐴12

𝐴13 × 𝐴14 × ……× 𝐴20
 

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴2 
 = 1  

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴2 
 = 0.1  

“Between” normal and 

log-normal 

distribution  

48  1.5  
0  

4.59  

0.009

8  
-1×10-8  

2.49  

2.50  
-0.013  

2.52  

2.46  

10  

𝐴1 × 𝐴2

𝐴3 × 𝐴4 × ……× 𝐴20
 

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴2 
 = 1  

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴2 
 = 0.1  

“Between” normal and 

log-normal 

distribution  

48  1.7  
0  

4.62  
-0.040  3×10-8  

2.51  

2.50  
0.055  

2.35  

2.66  

11  

𝐴1 ×
𝐴2+𝐴3

𝐴4+𝐴5
× 𝐴6 + 𝐴7 − 𝐴8  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴8
 = 1 

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴6
 = 0.1 and  

𝜎𝐴7
, 𝜎𝐴8

 = 0.05  

 

“Between” normal and 

log-normal 

distribution  

19  0.33  
1.58  

3.30  
0.44  -2×10-8 

2.52  

2.52  
-0.27  

3.15  

1.81  
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Data 

set  
Way to generate data set  

Original data i.e. without transformation  
After transformation            

using 𝒙𝑩𝒐𝒑𝒕  

After 

transformation 

using log10 𝒙 

Distribution of data 

set  

𝑪𝑽 of 

data 

set (%) 

𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

𝑩𝒐𝒑𝒕 𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

𝜸  

𝑭𝟐.𝟓 %  

𝑭𝟗𝟕.𝟓 %  

(%)  

12  

𝐴1 −  𝐴2 × 𝐴3 × …… .× 𝐴11   

𝜇𝐴 
 = 3 

𝜎𝐴 
 = 0.1  

𝜇𝐴2
, 𝜇𝐴3

, ….., 𝜇𝐴  
 = 1 

𝜎𝐴2
, 𝜎𝐴3

, …., 𝜎𝐴  
 = 0.05  

“Between” normal and 

log-normal 

distribution and 

negative skewness  

 

9.4  -0.26  
3.16  

1.78  
1.89  -6×10-8 

2.50  

2.48  
-0.59  

3.74  

0.98  

13  

100 + 10𝐴   

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.1  

 

log-normal 

distribution added to a 

constant  

Not 

relevant  
0.71  

0.55  

3.99  
-9.8  2×10-8 

2.41  

2.43  
0.64  

0.69  

3.90  

14  
100 − 10𝐴   

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.1  

log-normal 

distribution subtracted 

from a constant  

Not 

relevant  
-0.72  

4.01  

0.55  
9.7  -3×10-9 

2.42  

2.40  
-0.82  

4.11  

0.39  
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Clearly, for all the data, transformed data subsequent to optimization according to equation 3 

will have a skewness close to 0. The fraction of data below 𝑥 − 1.96  and above 𝑥 + 1.96  will 

both be 2.5 % making it possible to give a correct confidence interval. From this it can be 

concluded that the transformed data of all the datasets, subsequent to optimization of 𝐵, can be 

approximated with a normal distribution. Here follows a discussion of the different datasets.  

Dataset 1 and 2 - For an original normal distribution (data set 1), transformation using 𝑥𝐵𝑜𝑝𝑡 

will have no effect on the data and 𝐵 𝑝𝑡 will be close to 1. For an original log-normal distribution 

(data set 2), transformation will have the same effect as using log10 and optimized 𝐵 will be close 

to 0.  

Dataset 3 to 5 - Data with distributions described as “between” a normal and a log-normal 

distribution obtained by multiplying 20 identical variables. Note that for this construction, the 

skewness will increase with increasing standard deviation of the variables, although the number 

of multiplication steps is the same. Hence, the difference between the distribution of the data 

and a normal distribution will increase with increasing standard deviation of the variables. For 

equations containing multiplication and division steps, the distribution of the result can thus 

be approximated with a normal distribution when standard deviations of the variables are 

sufficiently small. Note that the value of 𝐵 𝑝𝑡 will be similar although the skewness of the data 

increases.  

Dataset 5 to 8 – Data with increasing number of multiplication steps from 1 to 19. The value of 

𝐵 𝑝𝑡 will decrease from 0.51 to 0.053 when increasing the number of multiplication steps. 

Hence, the value of 𝐵 𝑝𝑡 will reflect how the original data is related to a normal distribution and 

a log-normal distribution, and not the skewness of the data. For instance, for original data with 

a small standard deviation, the skewness will be small, but the value of 𝐵 𝑝𝑡 can still be close to 

0 indicating that the data has a distribution similar to a log-normal distribution.  

Dataset 9 to 10 - When including division steps transformed data can also be approximated 

with a normal distribution.  

For data that has been obtained by using a somewhat more complex equation consisting of 

multiplication, division, addition and subtraction (data set 11), transformation optimization 

will again result in data that can be approximated with a normal distribution. Without 

transformation, or if using log10 𝑥 as transformation, the data will be skewed. The equation and 

the standard deviations of the different variables in the equation used to generate the data were 

chosen in order to generate data that had a distribution “between” a normal and a log-normal 

distribution. The same data was used in Fig. 2(c) above.  

Typically, probability distributions for the results in chemical analysis will have a negligible or 

positive skewness. A negative skewness will seldom be encountered. If a negative skewness exist 

this will result in 𝐵 𝑝𝑡 values > 1. An example is given above (data set 12). Optimization will 

result in a 𝐵 𝑝𝑡 value of 1.89, and transformed data can again be approximated with a normal 

distribution.  

Data set 13 and 14 exemplify results obtained by adding a number with a relatively small or zero 

uncertainty to data that are negatively or positively skewed. In chemical analysis this can occur 

for instance when a measurand is calculated as the residual (for instance the copper content in 

weight- % in brass can be calculated as 100 %-sum of determined contents of other elements). 

Optimized 𝐵 values will be far outside the interval 0 to 1 (in this case -9.8 and 9.7, respectively) 
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but transformed data will be highly symmetric. Fractions of data below 𝑥 − 1.96  and above 𝑥 +

1.96  will be around 2.4 %, i.e. somewhat lower than 2.5 %, suggesting that transformed data 

are not fully normal distributed but close to normal distributed. Transformation using log10 𝑥 

will not handle asymmetry well in either of the two data sets.  

The Excel add in program Solver has here been used for optimization of 𝐵 with the goal that the 

skewness of the transformed data should be 0. The optimization process is illustrated in 

Fig. 3(a) to (c) showing the relationship between 𝐵 and absolute skewness for an original 

normal distribution (data set 1), an original log-normal distribution (data set 2), and an original 

distribution that is “between” a normal and a log-normal distribution (data set 6).  

 

Figure 3. Optimization of 𝐵 to obtain skewness close to 0. Relationship between 𝐵 and 

absolute skewness for (a) an original normal distribution (data set 1 in Table 3), (b) an 

original log-normal distribution (data set 2 in Table 3), and (c) an original distribution that is 

“between” a normal and a log-normal distribution (data set 6 in Table 3). 

 

As can been seen, there is a clear minimum in absolute skewness at 𝐵 equal to 1 for an original 

normal distribution (Fig. 3(a)), at 𝐵 close to zero for an original log-normal 

distribution (Fig. 3(b)), and at a 𝐵 value between 0 and 1 for an original distribution that is 

“between” a normal and log-normal distribution (Fig. 3(c)).  

It should be pointed out that some of the data in Table 2 have an asymmetry that is negligible 

in reality when evaluating measurement uncertainties. Intervals for original data comprising 

95 % of the data in a data set, with 2.5 % of the data below and above the interval, can be 

obtained by calculating 𝑥 ± 1.96 ×   for transformed and optimized data, followed by back-

transformation of the interval to the original space using Eq. 5. Such intervals are given in 
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Table 3 for the data sets in Table 2, together with the value of 𝑥  back transformed to the original 

space. Also included are the corresponding intervals and values of 𝑥  obtained without 

transformation and with transformation using log10 𝑥. In addition, 𝐶𝑉 for the original data set 

has been included.  

 

Table 3. Average values (𝑥 ) and intervals 𝑥 ± 1.96 ×   calculated for transformed data followed 

by back-transformation to the original space, for the data in Table 2 with transformation using 

𝑥𝐵𝑜𝑝𝑡 of 𝐵, without transformation, and with transformation using log10 𝑥. Also included is the 

coefficient or variation (𝐶𝑉) for the original data.  

Back transformed value of 𝒙̅ of transformed data  

Back transformed intervals 𝒙̅ ± 𝟏. 𝟗𝟔 × 𝒔 of 

transformed data  

Data 

set  

𝑪𝑽 for 

original 

data  

(%)  

 for 

original 

data  

Without 

transformation  

After 

transformation 

using 𝒙𝑩𝒐𝒑𝒕.  

After 

transformation  

using log10 𝒙  

1  10  6×10-3  
1.000  

0.804 – 1.196  

1.000  

0.804 – 1.196  

0.995  

0.816 – 1.213  

2  23  0.72  
10.27  

5.57 – 14.97  

9.998  

6.37 – 15.71  

9.999  

6.37 – 15.70  

3  9.0  0.25  
1.000  

0.824 – 1.176  

0.996  

0.835 – 1.186  

0.996  

0.836 – 1.187  

4  23  0.65  
1.001  

0.557 – 1.444  

0.977  

0.626 - 1.509  

0.976  

0.629 – 1.514  

5  47  1.4  
1.000  

0.081 – 1.919  

0.909  

0.366 – 2.161  

0.904  

0.372 – 2.195  

6  14  0.21  
1.000  

0.722 – 1.278  

0.995  

0.737 – 1.292  

0.990  

0.748 – 1.311  

7  23  0.54  
1.000  

0.557 – 1.443  

0.980  

0.616 – 1.498  

0.975  

0.625 – 1.520  

8  32  0.89  
1.000  

0.366 – 1.634  

0.956  

0.500 – 1.754  

0.951  

0.508 – 1.781  

9  48  1.5  
1.086  

0.073 – 2.100  

0.981  

0.402 – 2.375  

0.980  

0.403 – 2.382  
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Back transformed value of 𝒙̅ of transformed data  

Back transformed intervals 𝒙̅ ± 𝟏. 𝟗𝟔 × 𝒔 of 

transformed data  

Data 

set  

𝑪𝑽 for 

original 

data  

(%)  

 for 

original 

data  

Without 

transformation  

After 

transformation 

using 𝒙𝑩𝒐𝒑𝒕.  

After 

transformation  

using log10 𝒙  

10  48  1.7  
1.202  

0.062 – 2.342  

1.080  

0.452 – 2.664  

1.084  

0.447 – 2.633  

11  19  0.33  
1.005  

0.634 – 1.376  

0.995  

0.663 – 1.403  

0.987  

0.678 – 1.436  

12  9.4  -0.26  
2.000  

1.631 – 2.369  

2.008  

1.608 – 2.347  

1.991  

1.648 – 2.406  

13  
Not 

relevant  
0.71  

110.3  

105.6 – 115.0  

110.0  

106.3 – 115.8  

110.2  

105.7 – 115.0  

14  
Not 

relevant  
-0.72  

89.7  

85.0 – 94.4  

90.0  

84.2 – 93.7  

89.7  

85.1 – 94.6  

 

Note that intervals obtained by transformation using 𝑥𝐵𝑜𝑝𝑡 will be the true intervals for the 

simulated data sets. From this it can be seen that skewness become practically important at 𝐶𝑉 

> approximately 15 to 20 %. Furthermore, transformation using log10 𝑥 will in many cases 

handle skewness sufficiently well. However, the described mathematical process will be more 

general compared to assuming either a normal or a log-normal distribution. In addition, it can 

also handle negative skewness, as well as skewness after addition of a number with no or small 

uncertainty to the results. Measurements giving rise to 𝐶𝑉 > 20 % within laboratories can 

sometimes be found in some chemical analyses. However, 𝐶𝑉 for reproducibility for some 

methods can be in the range 15-30 %. 𝐶𝑉 for proficiency testing schemes can also be > 20 %.  

Furthermore, when considering sampling of heterogeneous samples such as some types of 

wastes and contaminated soil, 𝐶𝑉 well above 20 % are common. The cause of these large 𝐶𝑉 are 

typically not well-understood and difficult to model. Furthermore, in microbiology it is 

common that 𝐶𝑉 are > 20 % for food analysis.  
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5.2 Calculation of uncertainty intervals at 

different measurand levels  

In order to calculate uncertainty intervals originating from precision for samples, using a 

known 𝐵 𝑝𝑡, it is necessary to determine the measurand level dependence. It is not 

straightforward how to generate data that will reflect the measurand level dependence. 

However, it is suggested that a relevant approach will be to use different values for the mean 

value of 𝐴1, i.e. 𝜇𝐴 
, keeping 𝐶𝑉 for 𝐴1 constant for data generated using expressions described 

as  

𝐴1 × 𝑓 𝐴2, … , 𝐴𝑛   (8)  

For such data, both 𝐵 𝑝𝑡 and 𝐶𝑉 for data after transformation will be independent of the value 

𝜇𝐴 
. This is exemplified in Table 4 and 5 showing obtained 𝐵 𝑝𝑡, standard deviation ( ) and 𝐶𝑉 

after transformation and optimization of 𝐵, for data generated as  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴20  

(i.e. only using multiplication) in Table 4 and  

𝐴 ×𝐴2

𝐴3×𝐴4×……×𝐴2 
  

(i.e. also including division) in Table 5, where 𝜇𝐴2
, ….., 𝜇𝐴2 

 = 1 and 𝜎𝐴2
, …., 𝜎𝐴2 

 = 0.1, and 𝜇𝐴 
 

is varied between 0.001 and 1000 while keeping 𝐶𝑉 for 𝐴1 constant at 10 %. Also included are 

  and 𝐶𝑉 for the data without transformation and after transformation using log10 𝑥.  

 

Table 4. Obtained 𝐵 𝑝𝑡, standard deviation ( ) and 𝐶𝑉 after transformation using 𝑥𝐵𝑜𝑝𝑡.   and 

𝐶𝑉 obtained without transformation.   and 𝐶𝑉 obtained after transformation using log10 𝑥. Data 

generated at different levels (using multiplication) as described in the text.  

Without 

transformation  

Transformed data using 

𝒙𝑩𝒐𝒑𝒕 

Transformed data 

using log10 𝒙  

𝝁𝑨𝟏
  𝒔  𝑪𝑽 (%)  𝑩𝒐𝒑𝒕  𝒔  𝑪𝑽 (%)  𝒔  𝑪𝑽 (%)  

0.001  0.0005  46.9  0.052  0.016  2.36  0.197  -6  

0.01  0.005  46.9  0.051  0.018  2.31  0.197  -10  

0.1  0.05  46.9  0.054  0.021  2.44  0.197  -19  

1  0.5  46.9  0.053  0.024  2.39  0.197  -446  

10  5  46.9  0.053  0.027  2.39  0.197  21  

100  47  46.9  0.052  0.030  2.35  0.197  10  

1000  469  46.9  0.051  0.033  2.30  0.197  7  
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Table 5. Obtained 𝐵 𝑝𝑡, standard deviation ( ) and 𝐶𝑉 after transformation using 𝑥𝐵𝑜𝑝𝑡.   and 

𝐶𝑉 obtained without transformation.   and 𝐶𝑉 obtained after transformation using log10 𝑥. Data 

generated at different levels (using multiplication and division) as described in the text.  

Without 

transformation  

Transformed data using 

𝒙𝑩𝒐𝒑𝒕 

Transformed data 

using log10 𝒙  

𝝁𝑨𝟏
  𝒔  𝑪𝑽 (%)  𝑩𝒐𝒑𝒕  𝒔  𝑪𝑽 (%)  𝒔  𝑪𝑽 (%)  

0.001  0.00058  48.5  -0.042  0.025  1.89  0.197  -7  

0.01  0.0058  48.4  -0.042  0.023  1.90  0.197  -10  

0.1  0.058  48.4  -0.042  0.021  1.88  0.197  -20  

1  0.58  48.5  -0.042  0.019  1.90  0.197  561  

10  5.8  48.5  -0.041  0.017  1.87  0.197  19  

100  58  48.4  -0.041  0.015  1.84  0.197  10  

1000  584  48.5  -0.041  0.014  1.88  0.197  6.5  

 

This points out that after transformation using 𝑥𝐵𝑜𝑝𝑡, 𝐵 𝑝𝑡 and 𝐶𝑉 for transformed data will be 

independent of the value of 𝜇𝐴 
. This contrasts to using log10 𝑥 transformation where the 

standard deviation ( ) of transformed data is independent of 𝜇𝐴 
.  

If measurement results can be approximated with a normal distribution and standard 

deviation,  , is independent of the measurand, a confidence interval for the uncertainty of a 

measurement result, 𝑥, can be calculated as  

𝑥 − 𝑘 ×      to    𝑥 + 𝑘 ×    (9)  

where 𝑘 is the coverage factor.  

If measurement results can be approximated with a normal distribution and the relative 

standard deviation,  𝑟𝑒𝑙, is independent of the measurand, a confidence interval for the 

uncertainty of a measurement result, 𝑥, will be asymmetric since   will be different at the lower 

and the upper limit. For small  𝑟𝑒𝑙 the asymmetry is often neglected and the interval is 

calculated as  

𝑥 − 𝑘 ×  𝑟𝑒𝑙 × 𝑥    to    𝑥 + 𝑘 ×  𝑟𝑒𝑙 × 𝑥  (10)  

However, the lower limit, 𝑈𝑙, can be calculated as 𝑈𝑙 = 𝑥 − 𝑘 ×  𝑟𝑒𝑙 × 𝑈𝑙 which can be 

rearranged to 𝑈𝑙 = 𝑥  1 + 𝑘 ×  𝑟𝑒𝑙 . Likewise, the upper limit, 𝑈𝑢, can be calculated as 𝑈𝑢 = 𝑥 +

𝑘 ×  𝑟𝑒𝑙 × 𝑈𝑢 which can be rearranged to 𝑈𝑢 = 𝑥  1 − 𝑘 ×  𝑟𝑒𝑙 . Hence, the interval will be 

calculated as [7]  

𝑥

1+𝑘×𝑠𝑟𝑒𝑙
    to    

𝑥

1−𝑘×𝑠𝑟𝑒𝑙
  (11)  

This expression is valid for 𝑘 ×  𝑟𝑒𝑙 < 1.  
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Applying Eq. 9 on data transformed using log10 𝑥 will give a confidence interval of a 

measurement result in the transformed space. After back-transformation to the original space, 

a confidence interval around a measurement 𝑥 can be calculated as  

𝑥

10
𝑘×𝑠𝑙𝑜𝑔  

    to    𝑥 × 10𝑘×𝑠𝑙𝑜𝑔    (12)  

where  𝑙    
 is the standard deviation of transformed data. As an alternative, Eq. 12 can be 

expressed using the uncertainty factor [5, 6] 2.  

Applying Eq. 11 on data transformed using 𝑥𝐵𝑜𝑝𝑡 will give a confidence interval, after back-

transformation to the original space, that is  

𝑥

(1+𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵𝑜𝑝𝑡

    to    
𝑥

(1−𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵𝑜𝑝𝑡

  (13)  

where  𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠 is the relative standard deviation of transformed data.  

A confidence interval is constructed (Eq. 12 and 13) in the transformed space, symmetric 

around the mean value, which here, because of symmetry, is the same as the median. After 

back-transformation the quantiles represented by median and confidence limits are 

transformed to the same quantiles in the original space. Therefore, the back-transformed 

confidence interval covers the median with the intended probability and not the mean. 

The skewness originated in possible measurement errors also introduces a bias, i.e the mean 

value obtained due to possible error-influenced-measurements may differ from the true value. 

The magnitude and sign of the bias can not be properly estimated without knowledge of the 

skewed distribution. 

 

5.3 Implementation on small data sets 

representing experimental observations 

In reality the number of data available for estimating the probability distribution 

experimentally is typically very limited compared to what ideally is needed. In chemical analysis 

it is very common to use control samples and control charts [16]. These charts are an important 

tool in the internal quality work. Furthermore, data for control samples will provide an estimate 

of the within-laboratory reproducibility that can be used to estimate measurement uncertainty 

in so called top-down approaches [10, 17, 18]. The number of data in typical control charts are 

after a few years in the order of 102 or more. Data from control charts can therefore be of value 

when estimating and handling skewness in probability distributions of the results. In order to 

 
2 It has also been suggested that Eq. 12 can be written as  

𝑥

𝑈𝐹     to    𝑥 × 𝑈𝐹  

where 𝑈𝐹  is called the expanded uncertainty factor calculated as 𝑈𝐹 = 10𝑘×𝑠𝑙𝑜𝑔                                  

or 𝑈𝐹 = 𝑒𝑘×𝑠𝑙𝑜𝑔𝑒  where  𝑙  𝑒
 is the standard deviation of transformed data using the natural 

logarithm (loge).  
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investigate how well the described mathematical approach is applicable to small data sets, data 

sets with different distributions containing 102 data points were generated and transformed 

followed by optimization of 𝐵. Assuming t-distribution with 𝑛=102, intervals comprising 95 % 

of the data were then calculated as 𝑥 ± 1.98 ×   and back transformed to the original space, 

resulting in lower and upper limits of the intervals in the original space (denoted as 𝑥 − 1.98  

and 𝑥 + 1.98 , respectively). This was repeated 100 times for each distribution and the average 

and standard deviation of the quantiles 𝑥 − 1.98  and 𝑥 + 1.98  were calculated (denoted as 

𝑥 𝑥 −1.98𝑠, 𝑥 𝑥 +1.98𝑠,  𝑥 −1.98𝑠, and  𝑥 +1.98𝑠, respectively). The results are summarized in Table 6 

below giving the range of 𝐵 𝑝𝑡 values obtained, and 𝑥 𝑥 −1.98𝑠, 𝑥 𝑥 +1.98𝑠,  𝑥 −1.98𝑠, and 𝑥 +1.98𝑠 for six 

different distributions.  
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Table 6. Performance of the transformation and optimization procedure when applied to small data (102 data points).  

Data 
set  

Way to generate 
data  

Distribution of data  

After transformation using 𝒙𝑩𝒐𝒑𝒕 and back-transformation  

Small data set (102 data points)       
(repeated 100 times)  

Large data set                               
(106 data points)  

Range of 
𝑩𝒐𝒑𝒕 values 

obtained  

𝒙̅𝒙̅−𝟏.𝟗𝟖𝒔
(1)   

𝒔𝒙̅−𝟏.𝟗𝟖𝒔
(3) 

(n=100)  

𝒙̅𝒙̅+𝟏.𝟗𝟖𝒔
(2) 

𝒔𝒙̅+𝟏.𝟗𝟖𝒔
(4) 

(n=100)  

𝒙̅ − 𝟏. 𝟗𝟔𝒔    
𝑭𝟐.𝟓 % (%)  

𝒙̅ + 𝟏. 𝟗𝟔𝒔    
𝑭𝟗𝟕.𝟓 % (%)  

15  
𝐴1  

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.01  
Normal distribution  -18 to 19  

0.980  

0.0021  

1.020  

0.0021  

0.980  

2.50  

1.020  

2.49  

16  
𝐴1  

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.2  
Normal distribution  -0.2 to 2.6  

0.608  

0.045  

1.400  

0.044  

0.608  

2.50  

1.391  

2.50  

17  
10𝐴   

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.01  
Log-normal distribution  -8.0 to 8.5  

9.549  

0.049  

10.468 

0.053  

9.559  

2.51  

10.462  

2.51  

18  
10𝐴   

𝜇𝐴 
 = 1, 𝜎𝐴 

 = 0.15  
Log-normal distribution  -0.8 to 0.8  

5.07  

0.37  

19.73  

1.52  

5.09  

2.49  

19.69  

2.50  

19  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴5  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴5
 = 1 

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴5
 = 0.01  

“Between” normal and 
log-normal distribution  

-8.3 to 8.7  
0.956  

0.0039  

1.045  

0.005  

0.957  

2.49  

1.044  

2.48  

20  

𝐴1 × 𝐴2 × 𝐴3 × …… .× 𝐴5  

𝜇𝐴 
, 𝜇𝐴2

, ….., 𝜇𝐴5
 = 1 

𝜎𝐴 
, 𝜎𝐴2

, …., 𝜎𝐴5
 = 0.1  

“Between” normal and 
log-normal distribution  

-0.6 to 1.4  
0.617  

0.035  

1.497  

0.070  

0.616  

2.50  

1.497  

2.49  

(1) Average of 𝑥 − 1.98  for 100 data sets each containing 102 data points  

(2) Average of 𝑥 + 1.98  for 100 data sets each containing 102 data points  

(3) Standard deviation of 𝑥 − 1.98  for 100 data sets each containing 102 data points  

(4) Standard deviation of 𝑥 + 1.98  for 100 data sets each containing 102 data points  
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The six different distributions comprise two normal distributions with low and high standard 

deviations, two log-normal distributions with low and high standard deviations, and two “between” 

normal and log-normal distributions with low and high standard deviations. Table 6 also contains 

lower and upper limits of corresponding intervals (back transformed to the original space) for data 

containing 106 data points (denoted as 𝑥 − 1.96  and 𝑥 + 1.96 , respectively). In addition, fraction of 

data points below 𝑥 − 1.96  (denoted as 𝐹2.5 %), and fraction of data points above 𝑥 + 1.96  (denoted 

as 𝐹97.5 %) are also given.  

Several conclusions can be made from the results. In all cases (data set 15-20), 𝑥 𝑥 −1.984𝑠 and 𝑥 𝑥 +1.984𝑠 

for 100 repeated data sets, each with 102 data points, will be equal to 𝑥 − 1.96  and 𝑥 + 1.96  

calculated for a large data set with 106 data points as can be expected. Since the fraction of data below 

𝑥 − 1.96  and above 𝑥 + 1.96  will both be 2.5 % after transformation for all six cases, the fraction of 

data below 𝑥 𝑥 −1.98𝑠 and above 𝑥 𝑥 +1.98𝑠 will both also be 2.5 % after transformation for all six cases.  

With these small data sets (containing 102 data points), 𝐵 𝑝𝑡 values will vary a lot from data set to 

data set, and 𝐵 𝑝𝑡 values < 0 and > 1 can be obtained. Especially for data with small standard 

deviations (data set 15, 17 and 19) i.e. when normal and log-normal distributions are very similar, 

large variations in 𝐵 𝑝𝑡 values will occur. Hence, obtained 𝐵 𝑝𝑡 from small data will not reflect the 

real 𝐵 𝑝𝑡 value although the estimation will improve with increasing standard deviation. Indeed, it 

has been pointed out in the literature that departure from normality have to be quite large in order 

to demonstrate non-normality [19].  

Today this issue is typically handled by making a judgement if data can be considered to have a 

normal distribution or a log-normal distribution [5]. Looking at a histogram of the data can help 

making such judgement.  

Skewness of within-laboratory reproducibility of real data is illustrated in Example 6.1 Study of the 

distribution of results from determination of sulfur in gas samples using gas chromatography and 

chemiluminescence. Here data sets containing around 700 data points are used given a somewhat 

better estimate of the real 𝐵 𝑝𝑡 of the method. 𝐶𝑉 is 15 % which is on the border when skewness is 

becoming important to consider.  

 

5.4 Comparison of transformations using 𝑥𝐵  with 𝐵 

approaching 0 and log10 𝑥  

From the results and the discussion above it appears as transformation using 𝑥𝐵 with 𝐵 approaching 

0 and transformation using log10 𝑥 will be analogous transformations. This is demonstrated in two 

examples below.  

In the first example confidence intervals were calculated according to  

𝑥

(1+𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵    to    

𝑥

(1−𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵  (14)  

with 𝐵 approaching 0 and compared with confidence intervals calculated according to Eq. 12: 

𝑥

10
𝑘×𝑠𝑙𝑜𝑔  

    to    𝑥 × 10𝑘×𝑠𝑙𝑜𝑔    (12)  



 

26 

 

using 𝑘 equal to 1.96 for data in data set 1 to 14 in Table 2. For all data sets identical intervals were 

obtained when 𝐵 approaches 0. This is further illustrated in Fig. 4 showing the ratio of the lower 

limits of the two confidence intervals and the ratio of the upper limits of the confidence intervals 

when 𝐵 approaches 0 using data in data set 7.  

 

 

Figure 4. Ratio of the lower limits of the two confidence intervals and the ratio of the upper limits 

of the confidence intervals when 𝐵 approaches 0 using data in data set 7. 

 

Hence, identical confidence intervals will be obtained with Eq. 14 with 𝐵 approaching 0 and Eq. 12, 

i.e. the two different transformations will be analogous with 𝐵 approaching 0.  

Another example is given below in Example 6.2 Calculation of sampling uncertainty using the 

“duplicate” method and ANOVA.  

From these examples it is apparent that log-normal distributed data can be processed using 

transformation by loge (or log10) as well as by 𝑥𝐵 with 𝐵 approaching 0 (for instance using 𝐵 equal to 

0.0001).  

 

5.5 Possibilities to obtain 𝐵 𝑝𝑡  from modelling  

As discussed above, it is typically not feasible to obtain values for 𝐵 𝑝𝑡 from experimental data since 

these data sets typically contain too few data. As an alternative, it is here suggested to obtain 𝐵 𝑝𝑡 

from modelling of the uncertainty where large data sets can be simulated. This is demonstrated 

below in Example 6.3 Calculation of measurement uncertainty for determination of 

organophosporus pesticides in bread. Hence, it is needed to have a model equation with all all input 

quantities well described.  
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5.6 Adding additional uncertainty contributions  

It can be of interest to be able to combine two different uncertainty components with different 

distributions. As an example, an uncertainty contribution handling bias or sampling can be added to 

an uncertainty describing precision. Sometimes bias is included in the uncertainty instead of 

correcting the result [20-22]. The handling of bias is still under discussion and different opinions 

exist [20, 21], but this issue will not be discussed further here. 

Asymmetric distributions cannot be combined as naturally as standard uncertainties in the first-

order Taylor series approximation (GUM 5.1.2) [1]. Often asymmetry can be cured by log 

transformation followed by standard treatment and back transformation and in cases when this is 

unsufficient the 𝐵-transformation presented here can solve more general cases. These 

transformation methodologies are not treated in GUM, the only solution for combining assymmetric 

distributions that is presented is Monte Carlo simulation techniques (GUM supplement JCGM 101 

[11]). 

An example of a procedure for adding an uncertainty that can be assumed to have a normal 

distribution to an uncertainty with a skewed distribution is illustrated schematically in Fig. 5.  

 

 

Figure 5. Procedure for adding an additional uncertainty component to precision uncertainty. 

 

Based on experimental data, a large normal distributed data set (n=106) is generated in the 

transformed space. This data set is then back-transformed to the original space. For the uncertainty 

to be added, a large normal distributed data set (n=106) with 𝜇=1 and 𝜎 equal to the standard 

uncertainty is generated in the original space. Data from the two data sets are then multiplied or 

added based on judgements how they influence the measurand (in the original space) giving a new 

Original experimental data 
(precision data) 

Transformation using a suitable value of 𝐵 (giving a distribution that
can be approximated with a normal distribution)

Back-transformation to original space

Combination of the two data set in original space

Transformation and optimisation of 𝐵 for combined data  

Generation of a large (n=106) normal distributed data 
set describing the uncertainty to be added

Calculation of confidence interval for transformed combined data and 
back-transformation of confidence interval

Calculation of average𝑥 𝑡𝑟𝑎𝑛𝑠 and standard deviation  𝑡𝑟𝑎𝑛𝑠 for 
experimental transformed data

Generation of a large (n=106) normal distributed data set based on  
experimental data (i.e. with  = 𝑥 𝑡𝑟𝑎𝑛𝑠 and  =  𝑡𝑟𝑎𝑛𝑠)
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data set for the combined uncertainty. Finally, transformation and optimization of 𝐵 is performed 

for the combined data set.  

Uncertainty components with skewed distributions can also be added. In this case, a 𝐵 𝑝𝑡-value 

should be obtained that transforms the uncertainty distribution to be added to a symmetric 

distribution. A large normal distributed data set is then generated in this transformed space and 

transformed back to the original space, where it is combined with a large data set representing the 

original experimental data.  

 

 

6 Examples  
Different applications of transformation using 𝑥𝐵 when evaluating measurement uncertainties in 

chemical analysis are given in three examples below. An overview of the examples is given in Table 7.  

 

Table 7. Overview of three different examples demonstrating application of transformation using 𝑥𝐵.  

Example Title Issues that are illustrated 

6.1  

Study of the distribution of results from 

determination of sulfur in gas samples 

using gas chromatography and 

chemiluminescence  

Skewness of within-laboratory 

reproducibility data.  

Comparison of transformations 

using 𝑥𝐵 with 𝐵 approaching 0 and 

log10 𝑥.  

6.2  
Calculation of sampling uncertainty using 

the “duplicate” method and ANOVA  

Transformation prior to ANOVA 

calculations.  

Comparison of transformations 

using 𝑥𝐵 with 𝐵 approaching 0 and 

log10 𝑥.  

Comparison of uncertainty 

intervals calculated using different 

transformations.  

6.3  

Calculation of measurement uncertainty 

for determination of organophosporus 

pesticides in bread  

Possibility to obtain 𝐵 from 

modelling.  

Comparison of confidence 

intervals calculated using different 

transformations.  
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6.1 Study of the distribution of results from 

determination of sulfur in gas samples using gas 

chromatography and chemiluminescence  

Application (type of data): Data from control samples reflecting within-laboratory 

reproducibility.  

Introduction: In order to illustrate skewness of data from real measurements, data for two control 

samples used when determining sulfur (S) in gas samples using gas chromatography and 

chemiluminescence were utilized. Hence, these data reflect within-laboratory reproducibility.  

Calculations: The two data sets were transformed using 𝑥𝐵 using an optimized 𝐵. Confidence 

intervals (95 %) were then calculated in the transformed space and back-transferred to the original 

space. The results are shown in Table 8. For comparison, results when transforming using log10 𝑥 

and without transformation are given.  
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Table 8. Study of skewness of within-laboratory reproducibility data 1) for determination of sulfur (S) in gas samples using gas chromatography and 

chemiluminescence.  

Concentration 

level       

(mg/kg)  

Number 

of data  

Empirical 

2.5 and 97.5 

percentile 

in original 

space    

(mg/kg)  

Skewness 

in the 

original 

space  

𝑪𝑽 (%) 

in the 

original 

space  

Optimized 

𝑩  

Confidence 

interval 

(95 %) 

calculated 

in original 

space 

(mg/kg)  

Confidence 

interval (95 %) 

calculated in 

𝒙𝑩𝒐𝒑𝒕-transformed 

space and back-

transformed to 

original space     

(mg/kg)  

Confidence 

interval (95 %) 

calculated in 

log10-transformed 

space and back-

transformed to 

original space     

(mg/kg)  

9 744 6.6     11.9  0.42  15.0  0.41  6.3     11.6  6.5     11.8  6.6     11.9  

19 685 14.2     25.3  0.18  14.9  0.69  13.6     24.9  13.8     25.1  14.1     25.6  

1) New control samples were prepared when the previous control sample was finished. The measured concentrations have been corrected to account 

for the difference in nominal concentrations between the control samples.  
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Discussion: 𝐶𝑉 in the original space is 15 % for both concentration levels i.e. on the border when 

skewness is becoming important to consider. The two optimized 𝐵 values are 0.41 and 0.69. 

Considering the difficulty in estimating 𝐵 𝑝𝑡 from small data sets (here around 700 data are used), 

this indicates that a real 𝐵 𝑝𝑡 is around 0.5, i.e. the distribution is somewhere “between” a normal 

and a log-normal distribution. Confidence intervals (95 %) obtained without transformation, and 

with transformation using 𝑥𝐵𝑜𝑝𝑡  and log10 𝑥 are fairly similar, and compares well with the empirical 

2.5 and 97.5 percentiles in the original space. This confirms the rule of thumb that for CV up to 15-

20 % the asymmetry is not critical.  

 

6.2 Calculation of sampling uncertainty using the 

“duplicate” method and ANOVA  

Application (type of data): Replicate data from sampling of heterogeneous sampling targets.  

Introduction: In order to evaluate measurement uncertainty for the sampling step, it is often 

possible to assume that the sampling uncertainty is dominated by the repeatability of the sampling 

step [5]. The sampling repeatability and the analysis repeatability can be obtained from 

measurements of duplicate samples using ANOVA. This is sometimes called the “duplicate method” 

and is described in the Eurachem/CITAC Guide Measurement uncertainty arising from sampling - 

A guide to methods and approaches [5]. When sampling solid material, a log-normal distribution is 

sometimes encountered or assumed, and the results are therefore transformed using loge (or log10) 

subsequent to evaluation using ANOVA. This has been exemplified using results from measurements 

of the lead (Pb) content in contaminated top soil (see Example A2 in the Eurachem/CITAC Guide). 

An elaborated description and discussion of the experiments, and calculations and results when 

using transformation based on loge, are available in the Eurachem/CITAC Guide.  

Calculations: In the original example, the between-target variability was found to have a positive 

skewness similar to a log-normal distribution. It was argued that the sampling variability and the 

between-target variability were controlled mainly by heterogeneity of the analyte. Hence, sampling 

variability could also be assumed to have a log-normal distribution, and this motivated the use of 

log-transformation above. A histogram illustrating the between-target variability that has a 𝐶𝑉 of 

138 % is shown in Fig. 6.  
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Figure 6. (a) Histogram showing the between-target variability of Pb content in contaminated top 

soil (100 samples). (b) Enlarge lower part of the histogram.  

 

Here an optimized 𝐵-value of -0.306 was obtained for the data set. Confidence intervals covering 

95 % of the data were then calculated in the 1) original space, 2) in the 𝑥𝐵𝑜𝑝𝑡-transformed space and 

back-transformed to the original space, and 3) in the log10-transformed space and back-transformed 

to the original space. The results are given in Table 9. Also included are the empirical 2.5 and 

97.5 percentile in the original space.  
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Table 9. Empirical 2.5 and 97.5 percentile in the original space, and confidence intervals calculated 

in original space, and in 𝑥𝐵𝑜𝑝𝑡-transformed space and back-transformed to original space, and in 

log10-transformed space and back-transformed to original space.  

Empirical 2.5 and 97.5 

percentile in the 

original space                            

(mg/kg)  

Confidence 

interval (95 %) 

calculated in 

original space 

(mg/kg)  

Confidence interval 

(95 %) calculated in 

𝒙𝑩𝒐𝒑𝒕-transformed 

space and back-

transformed to 

original space     

(mg/kg)  

Confidence interval 

(95 %) calculated in 

log10-transformed 

space and back-

transformed to 

original space 1)     

(mg/kg)  

2.5 

percentile  

97.5 

percentile  

60-69  800-1900  -508   to   1091  61   to   1133  49   to   893  

1) Confidence interval will be identical if calculated in loge-transformed space and back-transformed 

to original space.  

 

Repeatability data (available in the Eurachem/CITAC guide) were then transformed using 𝑥𝐵𝑜𝑝𝑡 and 

ANOVA was used to obtain standard deviations for the sampling step, analysis step and complete 

measurement in the transformed space. Finally, uncertainty intervals in the original space for the 

sampling step, analysis step and complete measurement around a nominal value of 300 mg/kg were 

calculated according to Eq. 14:  

𝑥

(1+𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵    to    

𝑥

(1−𝑘×𝑠𝑆𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵  (14)  

with 𝐵 equal to -0.306 i.e. 𝐵 𝑝𝑡. The results are given in Table 10.  

 

Table 10. Comparison of uncertainty intervals (mg/kg) using a coverage factor of 2 around a nominal 

measured value of 300 mg/kg for sampling step, analysis step and complete measurement evaluated 

using transformation based on 𝑥𝐵𝑜𝑝𝑡 with 𝐵 𝑝𝑡 equal to -0.306, 𝑥0.0001, and loge. It is here assumed 

that repeatability is the dominating contribution to uncertainty both regarding sampling and 

analysis.  

Transformation based on  

𝒙𝑩𝒐𝒑𝒕 with 𝑩𝒐𝒑𝒕 

equal to -0.306  

𝒙𝑩 with 𝑩         

equal to 0.0001 
loge 𝒙  

Sampling step  88 to 730  115 to 781  115 to 781  

Analysis step  263 to 341  268 to 336  268 to 336  

Complete measurement  87 to 734  114 to 786  114 to 786  

 

For comparison, uncertainty intervals are also given in Table 10 when using transformations based 

on 𝑥𝐵 with 𝐵 equal to 0.0001 and loge (as in the Eurachem/CITAC Guide). In the latter case 

uncertainty intervals are calculated according to  
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𝑥

10
𝑘×𝑠𝑙𝑜𝑔𝑒

    to    𝑥 × 10𝑘×𝑠𝑙𝑜𝑔𝑒   (15)  

 

Discussion: In the Eurachem/CITAC guide, it was argued that the sampling variability and the 

between-target variability were controlled mainly by heterogeneity of the analyte. Hence, sampling 

variability could also be assumed to have the same distribution, as the between target variability. For 

between-target data it was found that transformation using 𝑥𝐵𝑜𝑝𝑡 with 𝐵 𝑝𝑡 equal to -0.306 will result 

in a confidence interval that best corresponds to the empirical 2.5 and 97.5 percentile.  

The uncertainty intervals calculated using transformation based on 𝑥−0.306 are somewhat different 

compared to using loge. Note also that transformation using loge and 𝑥0.0001 results in the same 

uncertainty intervals confirming that the two different transformations will be analogous with 𝐵 

approaching 0.  

 

6.3 Calculation of measurement uncertainty for 

determination of organophosporus pesticides in bread  

Application (type of data): Large measurement uncertainty evaluated based on a measurement 

model  

Introduction: Determination of pesticides in many sample types is known to have large 

measurement uncertainties. Calculation of measurement uncertainty for determination of 

organophosporus pesticides in bread based on a modelling approach is described in the 

Eurachem/CITAC Guide CG4 Quantifying uncertainty in analytical measurement (Example A4) [10] 

giving a relative expanded uncertainty of 68 %.  

Calculations: The modelling equation for the concentration of pesticide, 𝐶, is given by  

𝐶 =
𝐼𝑝×𝐶𝑟𝑒𝑓×𝑉𝑑𝑖𝑙

𝐼𝑟𝑒𝑓×𝑚×𝑅
× 𝐹ℎ 𝑚 × 𝐹𝐼  (16)  

and the input quantities are defined in Table 11.  
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Table 11. List of input quantities, their distribution, value, and standard deviation or halfwidth.  

Input 

quantity  
Definition  Distribution  Mean  

Standard 

deviation (s) or 

halfwidth (hw)  

𝐼𝑝  Intensity of sample peak height  Normal  1  0.005 (s)  

𝐼𝑟𝑒𝑓  
Intensity of reference standard 

peak height  
Normal  1  0.005 (s)  

𝐶𝑟𝑒𝑓  
Concentration of reference 

standard  
Rectangular  1  0.1 (hw)  

𝑚  Mass of sub-sample  Normal  1  0.0005 (s)  

𝑉𝑑𝑖𝑙  Final volume of extract  Normal  1  0.0025 (s)  

𝑅  Recovery  Rectangular  1  0.25 (hw)  

𝐹ℎ 𝑚  
Correction factor for sample 

heterogeneity  
Normal  1  0.2 (s)  

𝐹𝐼  

Correction factor for within-

laboratory reproducibility 

(intermediate precision)  

Normal  1  0.2 (s)  

 

In order to calculate 𝐵 𝑝𝑡 for this uncertainty model, a data set with 106 data was generated. For 

simplicity, the means of all input quantities have been set to 1. Standard deviations (for normal 

distributions) or halfwidths (for rectangular distributions) have been set to reasonable values aiming 

to give a relative expanded uncertainty close to the evaluated uncertainty in the original example. (In 

the original example data were not given for all the individual input quantities.) This resulted in 𝐵 𝑝𝑡 

equal to 0.32. Uncertainty interval around a nominal value of 1 was then calculated using Eq. 13 and 

this is given in Table 12 below.  
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Table 12. Comparison of uncertainty intervals (mg/kg) using a coverage factor of 1.96 around a 

nominal measured value of 1.  

Interval 

calculated as                      

±𝒌 × 𝒖𝒄,𝒓𝒆𝒍 × 𝒙 

Without 

transformation  

Transformation based on  

𝒙𝑩𝒐𝒑𝒕 with 𝑩𝒐𝒑𝒕 

equal to 0.32  
log10 𝒙 

Uncertainty interval  0.37 to 1.63  0.61 to 2.83  0.55 to 2.08  0.51 to 1.94  

 

For comparison, uncertainty interval based on transformation using log10 𝑥 calculated using Eq. 12, 

and without transformation using Eq. 11 are also included. Also given is uncertainty interval 

calculated as ±𝑘 × 𝑢𝑐,𝑟𝑒𝑙 where 𝑢𝑐,𝑟𝑒𝑙 is the combined relative standard uncertainty of the input 

quantities.  

 

Discussion: When having a model equation including knowledge about the distributions of the 

input quantities, a reliable 𝐵 𝑝𝑡 value can be calculated using simulations. This 𝐵 𝑝𝑡 can then be used 

for new data and is not dependent on empirical data set size. A 𝐵 𝑝𝑡 value of 0.32 suggests that the 

distribution of results is somewhere “between” a normal and a log-normal distribution. There is a 

clear difference in the obtained uncertainty intervals when a transformation procedure is used and 

when not used. There is also a small but apparent difference in the obtained uncertainty intervals 

when transformations based on log10 𝑥 and 𝑥𝐵𝑜𝑝𝑡 are used.  

 

 

7 Summary and conclusions  
The GUM document Evaluation of measurement data – Guide to the expression of uncertainty in 

measurement [1, 2], is the fundamental reference document when evaluating measurement 

uncertainty. Confidence of uncertainty intervals is here based on the Central Limit Theorem. This is 

based on a linear combination of random variables resulting in a normal symmetric distribution of 

results. The expanded uncertainty, U is then given as a symmetric interval based on a normal 

distribution around the measured value, 𝑥3.  However, this theorem is not applicable to 

multiplicative combination of random variables that is common in many measurements.  

In many measurements multiplicative combinations are present resulting in asymmetric 

distributions of the results. At relative standard uncertainties less than 15 %4, these distributions can 

 

3 In section G5.2 of GUM asymmetry is discussed: The alternative is to give an interval that is symmetric in probability 
(and thus asymmetric in U): the probability that Y lies below the lower limit y − U− is equal to the probability that Y lies 

above the upper limit y + U+. But in order to quote such limits, more information than simply the estimates y and uc(y) 

[and hence more information than simply the estimates xi and u(xi) of each input quantity Xi] is needed.  

 

4 The value is approximate 15 – 20 %.  
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typically be approximated with a normal distribution to find proper confidence intervals. At larger 

uncertainties, the skewness needs to be considered in order to evaluate the uncertainty interval of a 

measurement result. Handling of such large asymmetric uncertainties are outside the scope of GUM, 

and it is not straightforward how to handle them. It is common to transform data by using loge or 

log10. Transformation by taking the square root is sometimes used for instance in microbiology [23]. 

Using a normal distribution approximation, an expanded uncertainty can then be estimated in the 

transformed space, and an uncertainty interval for a measurement result can be calculated around 

the transformed value. This interval is then transformed back to the original space giving an 

asymmetric uncertainty interval.  

In this project a broader range of transformations is investigated by using the transformation  

𝑥𝑡𝑟𝑎𝑛𝑠 = 𝑥𝐵  (3)  

where 𝑥𝑡𝑟𝑎𝑛𝑠 and 𝑥 are the transformed and original data, respectively, and 𝐵 is a parameter that is 

chosen for each specific distribution. Many skewed distributions can be transformed to a more 

symmetric distribution by selecting a value of 𝐵 that gives minimum skewness. Skewness indicates 

the direction and relative magnitude of a distribution's deviation from a symmetric distribution, i.e. 

is a measure of asymmetry. The transformed symmetric data is then assumed to be normal and can 

be processed with standard statistical procedures, and symmetric confidence intervals expressing 

measurement uncertainty of a result can be calculated. The interval is then transformed back to the 

original space giving an asymmetric uncertainty interval. Using different values of 𝐵 different 

distributions will be transformed to symmetric distributions as illustrated in Fig. 7.  

 

 

Figure 7. Illustration of 𝐵 values used to transform different distributions to a symmetric 

distribution using the transformation 𝑥𝐵 

 

Two important values of 𝐵 that can serve as reference points on a “𝐵 scale” are 0 and 1. With 𝐵 equal 

to 1 no transformation will occur. Using 𝐵 close to zero will be analogous to taking the logarithm of 

the values. With 𝐵 values somewhere between 0 and 1, skewness of other types of distributions can 

be transformed to a normal distribution approximation. Note that using 𝐵 equal to 0.5 will be 

equivalent to taking the square root that is sometimes used in microbiology [23]. Skewed 

distributions far from zero is best transformed with 𝐵 less than zero.  

 

𝐵 value giving a symmetric
distribution for transformed
data  

0 1

Normal 
distribution

log-normal 
distribution

Skewed distributions 
(positive skewness)

Skewed distributions 
(negative skewness)

Skewed distributions 
far from zero



 

38 

 

To summarize the simulation results:  

• with 𝐵 > 1 distributions with a negative skewness will be transformed to symmetric distributions  

• with 0 < 𝐵 < 1 distributions with a positive skewness will be transformed to symmetric distributions  

• with 𝐵 < 0 positively skewed distributions far from zero will be transformed to symmetric 

distributions  

For existing data, estimation of 𝐵 that will result in transformation to a symmetric distribution can 

be performed by searching for a 𝐵 value that will minimize skewness of transformed data. The 

estimation of an optimized 𝐵 value will improve with an increased number of data, and an increased 

relative standard deviation of the data. However, for small data series (for instance with n in the 

order of 102), it is not possible to obtain a relevant estimation of an optimized 𝐵. Hence, in reality it 

is difficult to estimate an optimized 𝐵 from experimental data and use it for new data. However, the 

obtained optimized 𝐵 can still be used to process the existing experimental data.  

For measurements where the model equation can well describe the output results Monte Carlo 

simulation can generate big data sets. From these data sets reliable 𝐵 values can be estimated.  

When a relevant measurement model cannot be obtained for asymmetric distributions it seems 

reasonable to use judgement and assume 𝐵 = 0.5 that is equal to a square root transformation or 

assume 𝐵 close to 0 (for instance 0.0001) that is analogous to a logarithmic transformation. 

Alternatively, a general agreed value of 𝐵 could be used for a specific measurement procedure.  

Without any other information of a proper value for 𝐵, it seems as it is most reasonable to assume 𝐵 

equal to 1 when 𝐶𝑉 is less than 15 % (i.e. no transformation of the data is performed). For these 

relatively low 𝐶𝑉 the skewness is not critical for the measurement uncertainty intervals.  

Uncertainty intervals for a result 𝑥 (in the original space) when transformation is performed using 

𝑥𝐵𝑜𝑝𝑡 can be calculated as:  

𝑥

(1+𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵𝑜𝑝𝑡

    to    
𝑥

(1−𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵𝑜𝑝𝑡

  (13)  

where  𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠 is the relative standard deviation of transformed data, 𝑘 is the coverage factor taken 

from the t-distribution giving the required confidence level, and 𝐵 𝑝𝑡 is a 𝐵 that will result in a 

symmetric distribution of the transformed data. It is here assumed that the relative standard 

deviation in the original space,  𝑟𝑒𝑙, is independent of the measurand level which is often the case for 

many measurements at levels well above the limit of quantification.  

This approach can be compared to other ways of calculating uncertainty intervals when  𝑟𝑒𝑙 is 

independent of the measurand level and a summary is given in Table 13.  
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Table 13. Different ways of calculating uncertainty intervals for a measurement result, 𝑥, when the relative standard deviation in the original space, 

 𝑟𝑒𝑙, is independent of the measurand level.  

Using no transformation i.e. neglecting skewness in 

measurement results  

Using transformation to handle skewness in          

measurement results  

Neglecting that 𝒔 will be 

different at lower and upper 

limit  

Taking into account that 𝒔 

will be different at lower and 

upper limit (giving an 

assymetric interval)  

Transformation using 𝒙𝑩𝒐𝒑𝒕  
Transformation using  

log10 𝒙  

 

𝑥 − 𝑘 ×  𝑟𝑒𝑙 × 𝑥    to    𝑥 + 𝑘 ×  𝑟𝑒𝑙 × 𝑥  

 

𝑥

1+𝑘×𝑠𝑟𝑒𝑙
    to    

𝑥

1−𝑘×𝑠𝑟𝑒𝑙
  

(valid for 𝑘 ×  𝑟𝑒𝑙  < 1)  

 

 

𝑥

(1+𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵𝑜𝑝𝑡

    to    
𝑥

(1−𝑘×𝑠𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠)
  𝐵𝑜𝑝𝑡

  

 

𝑥

10
𝑘×𝑠𝑙𝑜𝑔  

    to    𝑥 × 10𝑘×𝑠𝑙𝑜𝑔    

  = standard deviation in the original space  

 𝑟𝑒𝑙 = relative standard deviation in the original space  

 𝑟𝑒𝑙,𝑡𝑟𝑎𝑛𝑠 = relative standard deviation in the transformed space after transformation using 𝑥𝐵𝑜𝑝𝑡  

 𝑙    
 = standard deviation in the transformed space after transformation using log10 𝑥  

𝑘 = coverage factor  
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It is also possible to combine uncertainty contributions with different asymmetry. This 

is performed by 1) finding an optimized 𝐵 for each uncertainty contribution, 2) 

generation of a large normal distributed data set in the transformed space for each 

uncertainty contribution, 3) back-transformation of the data sets to the original space, 

and 4) combination of the data sets in the original space. Finally, transformation and 

optimization of 𝐵 for the final data can be calculated.  
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