Measuring Perceived Software Quality

M Xenos and D Christodoulakis

Department of Computer Engineering and Informatics, University of Patras, Rion 26500, Greece

e-mail: xenos@cti.gr

This paper presents a method for measuring customer’s perception of software
quality. We argue that, although the importance of the perceived product quality is
recognised world-wide, there does not exist a rigorous method for measuring
customer perception of product quality. This paper presents a method expanded to
measure not only end-users perception for the product, but also company employees
perception for the quality of the internal deliverables produced within the company.
Additionally, in this paper we present examples of the method’s application on a set of
projects, in parallel with internal measurements, using a set of commonly used
product metrics. Subsequently, we compare measurement results that are derived
from customer perception measurements to results that are derived from internal
measurements, and we discuss the advantages and disadvantages of each method.

Keywords: software quality assurance, software metrics, user satisfaction measurements

Many definitions of software quality have been published,
which in general agree on what quality means and their
agreement can be enshrined by the phrase ‘satisfaction of
customer requirements’. In simple language, software must
do what the customer expects it to do. The customer plays
an important role in software quality. The international
standards 1SO9000%2, IEEE? and Baldrige*® place emphasis
on customer perceived quality and expect that customer
satisfaction be strongly linked to all functions of a business.
Within the scope of a company’s quality assurance
program however, customers are not only the end—users of
the product, but also the employees that use the results
available at the end of each phase of the software life cycle.
Therefore, implementation teams are the customers that use
deliverables produced by the design team and, in turn,
implementation teams produce deliverables for their
customers which are the testing and maintenance teams.
Throughout this paper the term ‘customer’ will be used in
such a broad manner, including the internal company teams
acting as customers as well as the end—users of the product.

This producer—customer relationship requires a method
in order to measure the customer perception of quality. The
ability to initially measure and eventually control customer
perceived quality, is a major success factor in software
business. Despite the indications derived from internal
measurement, the end-user is the ultimate judge of product
quality. In cases of disagreement between internal
measurement and end-user perceived quality, the best
company choice is to conform with end-user opinion.
Furthermore, modern software companies need to measure
not only the perception of product quality by end-users,
but also the perception of company employees for the
quality of internal deliverables. As previously explained,

such employees operate as customers who receive the
deliverables which other employees produce.

Quality assurance teams in modern software companies
measure product quality by applying a method which
relates internal measurable quantities with external quality
characteristics. Many examples of such metrics and their
interpretation can be found in software measurements
literature. For example, function points® are used in order
to estimate product cost, cyclomatic complexity’ is used in
order to estimate software complexity and maintainability,
Halstead® Effort Estimator is used in order to identify
required effort and time, etc. The great majority of quality
assurance teams follow a standard methodology that guides
them on how to organise and perform measurements and on
how to relate measurement results to product quality
characteristics aiming to control. Although they recognise
the importance of measuring customer perceived quality,
surveys measuring it are, however, not performed with a
similar rigorous approach. Furthermore, companies rarely
measure the quality of internal deliverables by handling
them as products and employees receiving them, as
customers.

Therefore, a method is needed allowing software
companies to rigorously measure the customer perception
of product quality. Such measurements could also be used
for internal deliverables quality assessment, as well as for
evaluating the performance of measuring procedures and
calibrating internal product metrics used by the quality
assurance team. This paper presents a method aiding in
rigorous organisation of customer perceived quality
measurements. This method is applicable to systems having
a sufficient number of customers, adequate to produce a
volume of responses suitable for analysis. The method
consists of techniques offering increasing reliability with

Xenos M. & Christodoulakis D., Measuring perceived software quality, Pre-print version of the paper published in Information and
Software Technology Journal, Butterworth Publications, Vol. 39, Issue 6, pp. 417-424, June 1997.

similar increase in the cost. Additionally, examples from
surveys applying this method are presented. Measurements
using this method and measurements using a set of internal
product metrics on the same projects are compared and
correlation results are discussed.

Product quality measures

According to Fenton'®, a measure is “an empirical objective
assignment of a number (or symbol) to an entity to
characterise a specific attribute”. Therefore, surveys of
customer opinion cannot be considered as measurements,
since they are based on non objective assignments that vary
according to user judgement. Jones'! recognises the need to
measure customers opinions and distinguish such measures
(he calls them “soft data measurements”) from other
measurements which can be quantified with no subjectivity
(he calls them “hard data measurements™). Although such
hard data measurements are objective and therefore ‘legal’
measures, they do not actually measure product quality
characteristics directly, but instead they measure internal
quantities which attempt to relate to these characteristics.
Unfortunately, this relation is not always successful.

MccCall*2, in a classical paper, proposed a three level
hierarchy model for product quality measurements. The
first level consists of quality characteristics (called
“factors”), the second level consists of criteria
decomposing the higher level factors and the third level,
the lowest level, consists of metrics being used to measure
the criteria. Due to these factors—criteria—metrics, this
model is also called FCM model. McCall proposed that
low level metrics should be mapped to a set of questions
that would be used in order to ‘measure’ each criterion.
The same year, Boehm®® also proposed a model based on a
similar approach. This model was probably the basis for
the international standard 1509126, which was proposed
many years later. The basic idea of this model is that low
level metrics should be used instead of questions, in order
to objectively measure attributes that are related to higher
level characteristics.

The problem with all these models is their inability to
combine all metrics in order to provide a global measure
that will actually estimate ‘software quality’. Conte™
describes such a virtual global metric which he calls
NWSC “Normalised Weighted Score”. This virtual
measure combines all metrics, by summing them according
to weights selected by the customer. Unfortunately, such a
‘super—metric’ that will combine all measurements in order
to provide a normalised score indicating the quality of a
product, cannot exist when measuring hard data. Such a
‘metric’ though, can be achieved when measuring customer
perceived quality using surveys. In the following section, a
method that provides perceived quality measurements
using such a ‘metric’ based on customer perceived quality
surveys is presented.

The method

Surveys are a valuable tool for a quality assurance team.
Modern software companies have recognised the
importance of surveys and they are using both internal and
external satisfaction surveys to measure from ‘aspects of

the employee’s workplace’®® to ‘external customer
satisfaction’. As argued by Kaplan'’, surveys allow
focusing on just the issues of interest, since they offer
complete control on the questions being asked.
Furthermore, surveys are quantifiable and therefore are not
only indicators in themselves, but also allow the
application of more sophisticated analysis techniques
appropriate to organisations with higher levels of quality
maturity.

In our studies, conducted in order to measure perceived
customer quality, we have used the method of mail surveys.
Although surveys are valuable tools, they have to deal with
four main problems:

 subjectivity of measurements,

- difficulty of statistically analysing results,
» lack of a weighing technique,

« frequency of errors

Handling the problems

Subjectivity of measurements. The simple truth is that
subjectivity of measurements will remain a problem,
regardless of the measurements methodology. However,
the adoption and application of simple rules when planning
the survey and designing the questionnaire will improve the
quality of the measurements. The quality engineer who is
setting up a mail survey using questionnaires must follow
guidlines®® on how to structure the questionnaire formally
in order to minimise objectivity due to various
interpretations of questions or choice levels. A synopsis of
the guidelines we propose® is as follows:

« Anintroductory note should describe the aim of
the questionnaire and the first question must be
highly related to this aim. The vocabulary and
phrasing must be clear and easy to understand.
Explanations must be precise and brief.
Furthermore, possible choices must be carefully
selected and tested in order to cover all possible
answers.

« The questions should be attractive to the users
and the size of the questionnaire must be kept
short.

« The questionnaire should be well structured and
the questions must follow a logical order
without references to previous questions.

» Questions with pre—defined answers should be
used instead of open questions, where possible.

» Questions should be objective, to avoid leading
to a specific answer (called ‘halo effect’) or
affecting user judgement.

» Concepts such as probability which may confuse
the user, should be avoided.

If these guidelines are followed during survey design, the
customers will reply guided by simple rules on how to
make their selection, choosing from predefined choices or
even better selecting on choice bars. Therefore, problems
of misunderstanding, or choosing an inappropriate answer
because of subjective judgement will be minimised,
resulting in measurements with increased objectivity.

Statistical analysis. As Montgomery® states: “Statistical
methods play a vital role in quality improvement”. But, the

statistical method that will be used is related to the type of
information contained in the measurement results.
According to Yeh?, typical measurements can be classified
into one of four standard measurement scales?:

« Nominal scale
« Ordinal scale
« Interval scale
« Ratio scale

The problem with survey measurements is that survey data
based on ordinal scale cannot be statistically analysed
using formal statistical methods. This is a common problem
when using questionnaires with multiple choice. No
information regarding the distance between two
neighbouring choices can be obtained. The solution is to
use choice bars, when possible, or provide specific
instructions which will explain that choices are in interval
scale. In this case, the interviewees must fully understand
that the multiple choices are in equal distance to each
other.

Weighing customer opinions. In many cases (especially
when measuring internal perceived quality) it is not correct
to weigh all user opinions equally. Averaging survey data
does not take into respect the significance of each user’s
opinion. Therefore, there is a need for techniques that will
evaluate users’ opinions according to their qualifications.
The proposed techniques, as presented in the following
section, take into account user qualifications and weigh
user opinion based on their qualifications.

Identifying and preventing errors. Due to the nature of
surveys, incorrect responses will occur. Such incorrect
responses, are responses not representing user opinion and
henceforth will be called ‘errors’. In our surveys, we have
measured a significant number of such errors caused by
various factors that might seem extreme, but do occur.
Such reasons are:

« The user did not answer the questionnaire
himself/herself, but gave it to someone else who
was inadequate to respond.

« The user answered the questionnaire very
carelessly and marked randomly when he/she
was confused, or just did not bother to read the
instructions.

» The user started to answer with enthusiasm, but
lost interest somewhere in the middle of the
questionnaire and just made some random
choices in order to finish it.

« The user responded with enthusiasm throughout
the questionnaire but misunder-stood some
questions and unintentionally provided some
Wrong responses.

Such errors can be prevented by following the simple rules
presented previously, but cannot be eliminated. It is a
challenge to design techniques that will detect such errors
in order to handle answered questionnaires containing a
large number of errors. Unfortunately, what Pressman®
said about software testing, also applies here: such
techniques cannot ensure the absence of errors, but they
can only show that errors are present. Two of the proposed

Measuring perceived software quality: M Xenos and D Christodoulakis

techniques presented in the following section, are used in
order to detect such errors.

The techniques

The main aim of this paper is to present a rigorous
approach to perceived product quality measurements that
will help a quality manager to include such measurements
in the company’s quality assessment program. Such
measurements will be carefully structured surveys to
produce measurement results with a minimum degree of
subjectivity, easy to analyse, respecting customer
qualifications and as error—free as possible. The techniques
proposed in order to measure the customers’ perception of
software quality are:

¢« QWCO
e QWCOq
* QWCOps

These techniques are ordered with increasing reliability and
increasing cost. The quality manager must select the
appropriate technique according to his/her needs and apply
it. QWCO (Qualifications Weighed Customer Opinion) is
measured using the formula shown in equation (1),
QWCOs (Qualifications Weighed Customer Opinion with
Safeguards) is measured using the formula shown in
equation (2) and QWCOps (Qualifications Weighed
Customer Opinion with Double Safeguards) is measured
using the formula shown in equation (3).

n

> (o)

QWCO = L)

QWCO, = T)

3)

The prime aim of all these techniques is to weigh
customers opinions according to their qualifications. In
order to achieve this O;, measures the normalised score of
customer i opinion, E; measures the qualifications of
customer i, and n is the number of customers interviewed.
Therefore, each customer contributes to the average
according to his/hers qualifications.

QWCO technique, although weighs customer opinions
according to their qualifications, it does not handle errors.
In order to detect errors, we have proposed and used a
number of safeguards embedded into the questionnaires, as
shown in equation (2) representing the QWCOs technique.

Xenos M. & Christodoulakis D., Measuring perceived software quality, Pre-print version of the paper published in Information and
Software Technology Journal, Butterworth Publications, Vol. 39, Issue 6, pp. 417-424, June 1997.

Safeguard is defined as a question placed inside the
questionnaire so as to measure the correctness of
responses. Therefore, safeguards are not questions aiming
to measure customer perceived quality, but control
questions aiming to detect errors. In equation (2) S; is the
number of safeguards that the customer i has replied
correctly to, and Sy is the total number of safeguards. Since
the use of the QWCUjs technique implies the use at least of
one safeguard in the questionnaire, division by Sy is always
valid.

Finally, QWCOps technique, as shown in equation (3),
uses the safeguards not only in order to detect errors when
measuring customer’s opinion, but also in order to detect
errors when measuring customers qualifications. In
equation (3), P; value can be 0 or 1. The value of P; is zero
in case that even a single error has been detected when
measuring the qualifications of customer i. P; value is set to
1 only if the safeguards have not detected any errors while
measuring the qualifications of customer i. This approach
results to the rejection of a customer’s responses, if errors
were detected while measuring his/her qualifications. The
reasoning for this approach is based on the following
concept; a customer who is unreliable when answering
questions regarding his/her qualifications, cannot
contribute to the overall perceived software quality by
having his/her opinion weighed according to such ‘fake’
qualifications.

Measuring customers qualifications. In order to measure
customer qualifications we have presented® and applied a
technique that allows the collection of data not only for
opinion O; of customer i for the perceived software quality,
but also for the qualifications of customer i. Each customer
is requested to fill in a set of questions requiring
information for three different aspects of his/hers
qualifications:

» personal background,
* syntactic knowledge,
» semantic knowledge.

Personal background is the collection of all customer
qualifications which are not related to computer
applications or the actual product itself. Syntactic
knowledge is the knowledge of existing computer
applications and the familiarity with the use of computers
in general. According to the nature of the measured
product, syntactic knowledge questions can be customised
in order to inquire knowledge of specific applications
related to the product. Semantic knowledge measures how
well the customer knows the semantics of the problem
automated by the product; meaning how well the customer
knows the process which the software aims to facilitate.

Naturally, when measuring customer qualifications, we
measure not only the knowledge, but also the years of
experience of each customer. After experiments, we have
assigned as default weights 0.2 for the personal
background, 0.4 for the syntactic and 0.4 for the semantic
knowledge. This means that personal background
contributes 20% of the overall customer qualifications,
syntactic knowledge contributes 40% and semantic
knowledge contributes the remaining 40%. It is obvious,
that the quality manager could modify these values
according to the specific problem characteristics.

Measuring customers opinions. In order to measure
customer opinion, we use questionnaires based on the
1ISO9126 international standard. Each of the six main
factors of the standard (functionality, reliability, usability,
efficiency, maintainability and portability) has been
decomposed into a number of criteria, in a similar manner
to that in McCall’s model, and finally into a set of
questions. The actual size of the final questionnaire, the
weight of each factor and the specific criteria that will be
included in order to measure each factor, vary according to
the specific project requirements and depend on those
quality factors on which the quality plan of the project has
focused on. An example of such a question being used in
order to measure the criterion “time behaviour” which will
be used for the estimation of the factor “efficiency” for a
database client program, is shown in figure 1.

Please rate the program’s performance regarding time

behaviour:

9-10 Response time equals or exceeds the requirements
under all condition and resource usage.

6-8 Response time equals or exceeds the requirements in
most conditions with minor limitations when
resource availability is decreased. Even with these
limitations the program can be used without
modifications.

3-5 Response time is decreased below the acceptable
limits in many situations. The system can be used but
with many limitations.

0-2 Response time is decreased below the acceptable
limits so often that the program cannot be used.

Figure 1 Example question from O; measurements

In the example question illustrated in figure 1, the user is
prompted to rate the program with an integer from 1 to 10.
Instructions given in the description at the beginning of the
questionnaire state that all responses are in interval scale
and that 10 rates a perfectly satisfactory program, whereas
0 rates a completely useless program. The specific
guidelines for each question are given in order to guide the
user in selecting the appropriate response.

Using safeguards. For controlling the errors, in our
surveys we have used three different types of safeguards
embedded into the questionnaires measuring perceived
product quality:

» Control Questions

« Repeated questions phrased differently

* Repeated questions offering different types of
responses

Control questions are questions which can be answered
only by one particular response. Any other response is an
indication of error. Repeated questions phrased differently
are questions with exactly the same meaning, but
rephrased. These questions are placed into different areas
within the questionnaire and have exactly the same choices
as candidate answers. The selection of two different
choices, no matter how distant the selected error is from the
correct answer is considered an error. Repeated questions
offering different types of responses are questions with
exactly the same phrasing but with entirely different types

of offered responses. In our surveys we have used such
questions with multiple choice or ratio request in their first
appearance and with a choice bar in their second
appearance. Naturally, the second appearance has not been
placed near the first. A different response to these same
questions, no matter how distant the selected error is from
the correct answer is considered an error. An example of a
safeguard (repeated questions offering different types of
responses) is shown in example questions illustrated in
figures 2 and 3. These two questions were placed in two
entirely different parts of the questionnaire.

Please rate the program’s performance regarding ease of

use:

9-10 The program can be used without any training. It
attracts the user and provides a perfect working
environment. On-line help is always available on any
item and under any conditions.

7-8 The program can be used with minor prior training.
On-line help is almost always available.

4-6 The program can be used after a training period.
On-line help is generally, but not always available
and in many occasions the user has to request
external assistance.

1-3 The program can be used only after prior extensive
training. On-line help is not provided or is totally
ineffective.

0 The program is so difficult to use that in cannot be
used at all.

Figure 2 First part of a safeguard

Safeguards can be used not only to preserve the integrity of
answers during the survey, but also to measure and control
the effectiveness of the questionnaire structure. We have
used safeguards in the early stages of survey design, before
finalising the structure of the questionnaire, in a small pilot
survey with a limited number of interviewees. The purpose
of this pilot survey has been to use the safeguards in order
to measure the average number of errors produced when
using some alternative questionnaires. These questionnaires
contain the same or similar questions with alternative
structures and choice types. The questionnaire which
produces the minimum measured number of errors is the
one selected for the final survey. Using this method we
have achieved to significantly reduce the measured number
of errors and therefore, to improve the overall quality of
the questionnaire. Our purpose has been to be able to
detect errors, but also to use the experience from this error
detection phase to succeed in error prevention.

Please rate the program considering how easy it is to use.
Answer by circling the response on the choice bar (select 0 if
the program is so difficult to use so that it cannot be used at
all, and select 10 if the program is very easy to use in a way
that attracts the user and provides a perfect working
environment)

Figure 3 Second part of the safeguard

Measuring perceived software quality: M Xenos and D Christodoulakis

Table 1 presents the error rates, detected by safeguards, in
pilot phases from four different surveys (rows A, B, C and
D). Two to four alternative questionnaire structures have
been produced (columns Q; to Q,) for each of the above
cases, and were applied to a limited volume of
interviewees. The errors measured using the safeguards on
the alternative questionnaires are ordered with the worst
error rate in the first column and the best in the last
column. As shown in table 1, (case C) the average number
of errors (detected by the safeguards) was reduced from
11.29% to 0.98%. Such a reduction, in an actual survey
using 1000 interviewees, indicates that without using
neither safeguards nor the pilot phase, the final survey
answer sheets would have 10% higher error rate than by
using the QWCOg technique. Such high error rate affects
the integrity of the survey’s findings and introduces a
significant risk in the decision making based on the
questionnaire results.

Table 1. Detected error rates in various surveys

Qs Q> Qs Q4
A 3.44% 1.37% 1.05% -
B 6.55% 1.33% 1.08% 0.88%
C 11.29% 2.33% 0.98% -
D 3.22% 1.20% - Z

Another issue, using the QWCOs and the QWCOpg
techniques, is to decide on the number of safeguards that
will be used within the questionnaire. Using a great number
of safeguards will cause side effects, such as increasing the
size of the questionnaire and therefore causing more errors.
This might result to a paradox; using safeguards to detect
errors that were caused by excessive use of safeguards.
Naturally, as in any real life situation, exaggerations cannot
offer acceptable solutions. The manager who is responsible
for the survey and the questionnaire design must decide on
the number of safeguards to be used, in respect to the
overall questionnaire size. In our surveys we have used a
number of safeguards ranging from 5% to 10%. This
number varies according to the actual questionnaire size.
(In small questionnaires the percentage of safeguards used
is higher than the one in large questionnaires).

Human Aspects. The use of the QWCOps technique could
bring up the human aspects® related with customer
perceived software quality measurements. The use of
safeguards when measuring customer qualifications could
be noticed and misunderstood by the customers. This could
be a major problem when such measurements are used in
internal company surveys. The detection of the safeguards
embedded within the questionnaire might be interpreted by
the employees as an attempt to measure their qualifications
which will eventually affect their career chances. This
might drop the employees moral or change their attitude
towards the company. Therefore, the choice of using the
QWCOps technique on an internal company survey is a
difficult choice that the quality manager must make, taking
into account all related human dimensions.

Xenos M. & Christodoulakis D., Measuring perceived software quality, Pre-print version of the paper published in Information and
Software Technology Journal, Butterworth Publications, Vol. 39, Issue 6, pp. 417-424, June 1997.

Applications of the Method

The method has been applied within the scope of our
measurements program aiming to measure customer
perceived quality. We have used the method in case
studies?®® on a number of software projects, parallel with
internal software quality measurements. For example, in
the case study presented in this section, we have used an
automated methodology”’ based on the ‘Athena’®
measurement environment facilitating internal software
quality measurements, in order to measure internal
software quality characteristics . In this case study, we have
used surveys based on the QWCOs technique in order to
measure the customers perception for quality.

Internal measurements were based on a triptych of
commonly used internal metrics (Halstead, McCabe and
Tsai®), which were completely automated and therefore
inexpensive. The problem with internal quality
measurements is that they measure internal software
characteristics and not the desired external quality factors.
The interpretation of the internal metrics, in order to
estimate these factors, is difficult and not always
successful. External measurements (customer perceived
quality measurements) for the purpose of this case study,
were based on surveys. These kind of measurements have a
higher cost level than internal measurements, but offer
results on customers perception for the desirable external
quality characteristics.

Table 2 shows the normalised measurement results of
the 46 software products measured using the QWCOg
technique, in assenting order (worst measurements first).
These projects were the measured samples for the
presented case study. The measurements of customer
perception of quality were based on a total of 1551
responded questionnaires with proper product evaluation
from wvarious users. Table 3 shows the internal
measurement results for the same 46 projects in the same
order as in table 2. The internal measurement results are
normalised and derived using a combination formula for
the metrics implemented into the internal measurements
program. This combination metrics formula (CMF) does
not measure a physical quantity of the product, but
combines all metric results. Its solid purpose is to provide a
collective mechanism for comparison as shown in equation

(4).

Table 2. QWCOg measurements

006 012 012 014 016 019 019 021
023 026 028 030 030 030 031 033
033 034 034 039 040 041 042 043
043 044 045 046 047 048 048 048
051 054 056 060 060 060 0.67 0.75
076 078 080 0.86 0.88 0.94

Table 3. Normalised CMF measurements

029 048 077 037 022 036 061 035
039 033 052 035 075 040 051 058
049 046 050 080 039 070 066 047
064 075 048 047 049 053 055 047
057 060 061 052 072 062 098 0.72
068 091 075 088 087 0.89

The metrics that were chosen to participate in the CMF are
the weighed average language level (A,), the essential size
ratio (R), the weighed average cyclomatic complexity (V)
and the data structure complexity metric (T). As an
indication of the language level for the entire project, the
weighed average language level, which is shown in
equation (5), was used in order to measure the contribution
of the language level of every routine i into the overall
project language level. A project is a collection of routines
created by various programmers. Each one of these
routines has a different language level and contributes to
the project language level according to the routine’s size.

CMF =02, +02R +04 ¥, +02 T (4)

> (N, @)

A = IZ—N (5)

The use of the essential size ratio R, which is measured as
shown in equation (6), is justified by the analyses®
indicating that N" measures the optimal module size
without any code impurities. Therefore, R provides an
indication of the proper, or not, use of the programming
language.

R=— (6)

In a similar manner to A, the cyclomatic complexity
weighed average (Vw,) is the ratio of 10 by the weighed
average of McCabe’s metric for each routine i. The number
10 is the proposed highest acceptable complexity by
McCabe. The formula to measure V,, is shown in equation
(7). Finally, in order to measure the data structures
complexity T, the higher polynomial exponent (T,) from
the derived data structure polynomials was used as shown
in equation (8). We must emphasise again that proper
analysis is based on the individual results of all metrics, but
since the complete set of results for all the metrics used is
not easy to present in a paper, we use CMF which provides
a way to combine all metrics in a easy to present manner.

EZ(Ni wgi)g

V,, =10/ W@ @)

L ©

ex

The correlation between the measurement results of tables
2 and 3 was measured to be 70.44%. Such correlation
shows that the internal measures used, do not completely
conform to the customer perceived quality measurements.
The scatter plot of figure 1 illustrates this correlation by
representing the QWCOs measurements in the horizontal
bar and the normalised CMF results in the vertical bar. The

diagonal line is the correlation line, representing the line
where all point should be if the two measurement methods
were 100% correlated. The points which are marked below
this correlation line represent projects that, although they
have not satisfied internal measurement standards, they
have achieved higher than expected scores in customer
perceived quality measurements. The points marked above
the correlation line represent projects that, have satisfied
internal measurement standards, but have not achieved
equally high scores in customer perceived quality
measurements.

1,0
0,9 -
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0 f f f f f f f f f

0,0010203040506 070,809 10

QWCOs

CMF

Figure 4 Scatter Plot of 46 projects

As one can see in the scatter plot, there are almost no
projects which fail the internal quality measurements and
achieve high scores in customer perceived measurements.
Very few points are below the correlation line and no
points are in great distance below this line. On the contrary,
many points are not only just over the correlation line, but
further above. We must emphasise the fact that all the
individual measurements for each metric used, produced
similar scatter plots. The CMF is used only to serve as a
collective formula for presentation purposes. This can lead
us to the conclusion that, although internal metrics can
detect programs that might get low scores in terms of
customers perception for their quality, satisfaction of
internal measurement does not guarantee achievement of
high scores in customer perceived quality measurements.
Keeping in mind that customer perception of quality is a
success measure for software companies, we can conclude
that internal metrics offer a great means for detecting
programs that might cause low customer perceived quality
measurements. Naturally, this is not the only purpose of
internal measurements. However, since internal
measurements cannot fully detect programs that will have
low customer perceived quality measurements, the use of
surveys is required in order to measure the actual customer
perceived quality and in order to test and calibrate the
internal measurement procedures.

Conclusion

This paper presents a method which focuses on the
definition of software quality as ‘satisfaction of customer
requirements’. This method fits into any quality assurance

Measuring perceived software quality: M Xenos and D Christodoulakis

framework and especially to those based on 1S09000,
IEEE, or Baldrige. As any method, it has advantages and
disadvantages. The disadvantages are cost in deploying the
techniques, error rates, subjectivity of the answers and
human factors involved with surveys and qualification
measurements. This paper offers solutions in the form of
techniques and guidelines in order to overcome these
disadvantages. The quality manager must weigh the
priorities for each specific case and decide which one of
the proposed techniques will be used.

The main advantages of the method presented in this
paper are: a) it conforms with the definition of quality, b) it
fits in almost every quality assurance framework, c) it is
quantifiable; it measures directly external quality factors
and can be subject to more sophisticated analysis
techniques, appropriate to organisations with higher levels
of quality maturity, d) it is always applicable and does not
depend on programming languages or tools and e) it offers
interaction with customers thus providing confidence that
the company respects their opinion.

The application of this method in parallel with software
quality measurements based on internal metrics, proves that
the method can actually be used in parallel with such
measurements. The aim of this method is not to substitute
internal metrics, but to offer an alternative solution. This
solution emphasising that quality focuses on customer
requirements, should be used in parallel with current
practices in order to aid in calibrating metrics, in
controlling measurement results, and in providing
confidence to both the company and the users.

Acknowledgements

The authors would like to thank the anonymous referees for
their careful review and suggestions and Ms. M.
Stamison—Atmatzidi, EFL Instructor at the Dep. of
Computer Engineering and Informatics for the proof-
reading and corrections of the English.

References

1 ISO, ‘Quality Management and Quality Assurance Standards’,
International Standard, ISO/IEC 9001: 1991

2 Ince, D, ‘ISO 9001 and Software Quality Assurance’, Quality Forum,
McGraw Hill, isbn: 0-07-707885-3, 1994

3 IEEE, ‘Standard for a Software Quality Metrics Methodology’, P-
1061/D20, IEEE Press, New York, 1989

4 Brown, M G, ‘Baldrige Award Winning Quality: How to Interpret the
Malcom Baldrige Award Criteria’, Milwaukee, WI: ASQC Quality
Press, 1991

5 Steeples, M M, ‘The Corporate Guide to the Malcom Baldrige
National Quality Award’, WI: ASQC Quality Press, 1993

6 Albrecht, A J, ‘Measuring application development productivity’,
Proc. of IBM Apllic. Dev. Joint SHARE/GUIDE Symposium,
Monterey, CA, pp. 83-92, 1979

7 McCabe, T J, ‘A complexity measure’, IEEE Trans. Soft. Eng. SE-
2(4), pp. 208-320, 1976

8 Halstead, M H, ‘Elements of Software Science’, Elsevier North
Holland, 1977

9 Kent, R, ‘Marketing Research in Action’, Routledge, London, isbn:
0-415-06759-6, 1993

10 Fenton, N E, ‘Software Metrics A Rigorous Approach’, Chapman &
Hall, isbn: 0-442-31355-1, 1992

11 Jones, C, ‘Applied Software Measurement: Assuring Productivity
and Quality’, McGraw Hill, isbn: 0-07-032813-7, 1991

Xenos M. & Christodoulakis D., Measuring perceived software quality, Pre-print version of the paper published in Information and
Software Technology Journal, Butterworth Publications, Vol. 39, Issue 6, pp. 417-424, June 1997.

12 McCall, J A, Richards, P K, and Walters, G F, ‘Factors in Software
Quality, Vols I, II, 11I’, US Rome Air Development Center Reports
NTIS AD/A-049 014, 015, 055, 1977

13 Boehm, B W, Brown, J R, Kaspar, J R, Lipow, M, McCleod, G J,
and Merrit, M J, ‘Characteristics of Software Quality’, North
Holland, 1978

14 ISO, ‘Information technology - Evaluation of software - Quality
characteristics and guides for their use’, International Standard,
ISO/IEC 9126: 1991

15 Conte, S D, Dunsmore, H E, and Shen, V Y, ‘Software Engineering
Metrics and Models’, Benjamin Cummings, isbn: 0-8053-2162-4,
1986

16 Evvardsson, B, Thomasson, B, and Ovretveit, J, ‘Quality of Service.
Making it Really Work’, McGraw Hill, isbn: 0-07-707949-3, 1994

17 Kaplan, C, Clark, R, and Tang, V, ‘Secrets of Software Quality’,
McGraw Hill, isbn: 0-07-911795-3, 1995

18 Lahlou, S, Van der maijden, R, Messu, M, Poquet, G, and Prakke, F,
‘A Guideline for Survey — Techniques in Evaluation of Research’,
Blussels, ESSC-EEC-EAEC, 1992

19 Xenos, M, and Christodoulakis, D, ‘Evaluating Software Quality by
the Use of User Satisfaction Measurements’, 4™ Software Quality
Conference, SET, University of Abertay, Dundee, pp. 181-188, 1995

20 Montgomery, D C, ‘Introduction to Statistical Quality Control’,
second edition, John Wiley & Sons, isbn: 0-471-51988-X, 1991

21 Yeh, H T, ‘Software Process Quality’, McGraw Hill, isbn: 0-07-
072272-2, 1993

22 Stevens, S 'S, ‘On the Theory of Scales of Measurement’, Science,
103: 677, 1946

23 Pressman, R S, ‘Software Engineering. A Practitioner’s Approach’,
3" edition, McGraw Hill, isbn: 0-07-050814-3, 1992

24 Xenos, M, and Christodoulakis, D, ‘Software Quality: The User’s
Point of View’, pp. 266-272 of Software Quality and Productivity,
Chapman & Hall, isbn: 0-412-62960-7, 1995

25 Thomas, B, ‘The Human Dimension of Quality’, McGraw Hill, isbn:
0-07-709051-9, 1994

26 Xenos, M, Stavrinoudis, D, and Christodoulakis, D, ‘The Correlation
Between Developer-oriented and User-oriented Software Quality
Measurements (A Case Study)’, 5th European Conference on
Software Quality, EOQ-SC, Dublin, pp. 267-275, 1996

27 Xenos, M, and Christodoulakis, D, ‘An Applicable Methodology to
Automate Software Quality Measurements’, IEEE Software Testing
and Quality Assurance International Conference, New Delhi, pp.
121- 125, IEEE ID: 0-7803-2608-3, 1994

28 Tsalidis, C., Christodoulakis, D., and Maritsas, D., ‘Athena: A
Software Measurement and Metrics Environment’, Software
Maintenance Research and Practice, 1991

29 Tsai, W. T., Lopez, M. A., Rodriguez, V., and Volovik, D., ‘An
Approach to Measuring Data Structure Complexity’, Compsac86,
pp. 240-246, 1986

30 Fitzsimmons, A., and Love, T., ‘A Review and Evaluation of
Software Science’, Computing Surveys, Vol. 10, No 1, pp. 45-60,
1978

31 Christensen, K., Fitsos, G. P., and Smith, C. P., ‘A Perspective on
Software Science’, IBM Syst. Journal, Vol. 20, No 4, pp. 372- 387,
1986

