CSCI-1680 - Computer Networks

Network Layer: IP & Forwarding

Chen Avin

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

Administrivia

- IP out today. Your job:
 - Find partners, get setup with Github
 - Implement IP forwarding and DV routing
 - Get started NOW (ok, after class)
- HW1 due today

Today

Network layer: Internet Protocol (v4)

Forwarding

- Addressing
- Fragmentation
- ARP
- DHCP
- NATs
- Next 2 classes: Routing

Internet Protocol Goal

- How to connect everybody?
 - New global network or connect existing networks?
- Glue lower-level networks together:
 - allow packets to be sent between any pair or hosts
- Wasn't this the goal of switching?

Internetworking Challenges

• Heterogeneity

- Different addresses
- Different service models
- Different allowable packet sizes
- Scaling
- Congestion control

How would you design such a protocol?

- Circuits or packets?
 - Predictability
- Service model
 - Reliability, timing, bandwidth guarantees
- Any-to-any
 - Finding nodes: naming, routing
 - Maintenance (join, leave, add/remove links,...)
 - Forwarding: message formats

IP's Decisions

- Packet switched
 - Unpredictability
- Service model
 - Lowest common denominator: best effort, connectionless datagram
- Any-to-any
 - Common message format
 - Separated routing from forwarding (Data & Control Plane)
 - Naming: uniform addresses, hierarchical organization
 - Routing: hierarchical, prefix-based (longest prefix matching)
 - Maintenance: delegated, hierarchical

An excellent read

David D. Clark, "The design Philosophy of the DARPA Internet Protocols", 1988

- Primary goal: multiplexed utilization of existing interconnected networks
- Other goals:
 - Communication continues despite loss of networks or gateways
 - Support a variety of communication services
 - Accommodate a variety of networks
 - Permit distributed management of its resources
 - Be cost effective
 - Low effort for host attachment
 - Resources must be accountable

Internet Protocol

- IP Protocol running on all hosts and *routers*
- Routers are present in all networks they join
- Uniform addressing
- Forwarding/Fragmentation
- Complementary:
 - Routing, Error Reporting, Address Translation

The Internet network layer

host, router network layer functions:

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

IP Protocol

• Provides addressing and *forwarding*

- Addressing is a set of conventions for naming nodes in an IP network
- Forwarding is a local action by a router: passing a packet from input to output port
- IP forwarding finds output port based on destination address
 - Also defines certain conventions on how to handle packets (e.g., fragmentation, time to live)
- Contrast with routing
 - Routing is the process of determining how to map packets to output ports (topic of next two lectures)

Service Model

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets may be lost
 - packets may be delivered out of order
 - duplicate copies of packets may be delivered
 - packets may be delayed for a long time
- It's the lowest common denominator
 - A network that delivers no packets fits the bill!
 - All these can be dealt with above IP (if probability of delivery is non-zero...)

IP addressing

- Globally unique (or made seem that way)
 - 32-bit integers, read in groups of 8-bits: 128.148.32.110
- Hierarchical: network + host
- Originally, routing prefix embedded in address
 7 24

- Class A (8-bit prefix), B (16-bit), C (24-bit)
- Routers need only know route for each network

Forwarding Tables

 Exploit hierarchical structure of addresses: need to know how to reach *networks*, not hosts

Network	Next Address
212.31.32.*	0.0.0
18.*.*.*	212.31.32.5
128.148.*.*	212.31.32.4
Default	212.31.32.1

- Keyed by network portion, not entire address
- Next address should be local: router knows how to reach it directly* (we'll see how soon)

Classed Addresses

Hierarchical: network + host

- Saves memory in backbone routers (no default routes)
- Originally, routing prefix embedded in address
- Routers in same network must share network part

Inefficient use of address space

- Class C with 2 hosts (2/255 = 0.78% efficient)
- Class B with 256 hosts (256/65535 = 0.39% efficient)
- Shortage of IP addresses
- Makes address authorities reluctant to give out class B's

Still too many networks

- Routing tables do not scale
- Routing protocols do not scale

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address
 <u>subnet part</u>
 <u>part</u>
 11001000 00010111 00010000 00000000

200.23.16.0/23

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

Classless Addressing

Route aggregation with CIDR

Longest prefix matching

- longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 ********	1
11001000 00010111 00011*** ********	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

Packet Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only

DestAddr & SrcAddr (32)

Fragmentation & Reassembly

- Each network has maximum transmission unit (MTU)
- Strategy
 - Fragment when necessary (MTU < size of datagram)
 - Source tries to avoid fragmentation (why?)
 - Re-fragmentation is possible
 - Fragments are self-contained datagrams
 - Delay reassembly until destination host
 - No recovery of lost fragments

Fragmentation Example

- Ethernet MTU is 1,500 bytes
- PPP MTU is 576 bytes

- R2 must fragment IP packets to forward them

Fragmentation Example (cont)

- IP addresses plus ident field identify fragments of same packet
- MF (more fragments bit) is 1 in all but last fragment
- Fragment offset multiple of 8 bytes
 - Multiply offset by 8 for fragment position original packet

	Start of header				
	ldent = x			0	Offset = 0
(a)	Rest of header 1400 data bytes				ader
()					
	Start of header				
	ldent = x			1	Offset = 0
	Rest of header				

Start of header				
Ident = x			1	Offset = 0
Rest of header				
512 data bytes				

(b)

Start of header		
Ident = x 0 Offset = 128		Offset = 128
Rest of header		
376 data bytes		

Translating IP to lower level addresses or... How to reach these *local* addresses?

Map IP addresses into physical addresses

- E.g., Ethernet address of destination host
- or Ethernet address of next hop router

Techniques

- Encode physical address in host part of IP address (IPv6)
- Each network node maintains lookup table (IP->phys)

ARP – Address Resolution Protocol

- Dynamically builds table of IP to physical address bindings for a *local network*
- Broadcast request if IP address not in table
- All learn IP address of requesting node (broadcast)
- Target machine responds with its physical address
- Table entries are discarded if not refreshed

ARP Packet Format

0	8 1	6 3	
Hardware type=1		ProtocolType=0x0800	
HLen=48	PLen=32	Operation	
	SourceHardware	Addr (bytes 0–3)	
SourceHardware/	Addr (bytes 4–5)	SourceProtocolAddr (bytes 0–1)	
SourceProtocolA	ddr (bytes 2–3)	TargetHardwareAddr (bytes 0–1)	
TargetHardwareAddr (bytes 2–5)			
-	TargetProtocolA	ddr (bytes 0–3)	

- HardwareType: type of physical network (e.g., Ethernet)
- ProtocolType: type of higher layer protocol (e.g., IP)
- HLEN & PLEN: length of physical and protocol addresses
- Operation: request or response
- Source/Target Physical/Protocol addresses

DHCP: Dynamic Host Configuration Protocol

goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

Network Address Translation (NAT)

- Despite CIDR, it's still difficult to allocate addresses (2³² is only 4 billion)
- We'll talk about IPv6 later
- NAT "hides" entire network behind one address
- Hosts are given *private* addresses
- Routers map outgoing packets to a free address/port
- Router reverse maps incoming packets
- Problems?

NAT: network address translation

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

IPv4 private addresses

IANA-reserved private IPv4 network ranges					
	Start	End	No. of addresses		
24-bit Block (/8 prefix, 1 × A)	10.0.0.0	10.255.255.255	16 777 216		
20-bit Block (/12 prefix, 16 × B)	172.16.0.0	172.31.255.255	1 048 576		
16-bit Block (/16 prefix, 256 × C)	192.168.0.0	192.168.255.255	65 536		

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

Traceroute and ICMP

source sends series of UDP segments to dest

- first set has TTL =1
- second set has TTL=2, etc.
- unlikely port number
- when *n*th set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP

when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP
 "port unreachable"
 message (type 3, code 3)
- source stops

Slide from: "Computer Networking: A Top Down Approach" - 6th edition

Coming Up

- Routing: how do we fill the routing tables?
 - Intra-domain routing
 - Inter-domain routing

